首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
To carefully assess the sugar regulation of the CBL-interacting protein kinase 15 (CIPK15) promoter, we established two transgenic rice cell lines that contained the β-glucuronidase gene under the control of the CIPK15 promoter. In these cells, CIPK15 promoter activity was effectively suppressed by glucose compared to the promoter activity in starved cells. However, such sugar suppression was abolished upon O2 deprivation and by inhibition of oxidative phosphorylation. Therefore, crosstalk between sugar regulation and metabolic status occurs at the CIPK15 promoter. A transient expression assay demonstrated that sugar regulation of the firefly luciferase gene under the control of the Amy3D promoter was also affected in the same way, by either anoxic conditions or inhibition of oxidative phosphorylation. Since the expression pattern of both the CIPK15 and Amy3D promoters is the same with respect to sugar regulation and susceptibility to anaerobic conditions, the two promoters may share cis-element(s). Alternatively, anoxic interference of Amy3D gene regulation may simply be due to regulation of the CIPK15 gene, a key upstream regulator of the signaling cascade for Amy3D expression. Therefore, using computer-assisted sequence analyses, we carefully searched the CIPK15 and Amy3D promoters for conserved sequences and potential cis-element(s) that might be involved in such a crosstalk.  相似文献   

7.
Anaerobic conditions reversibly inhibit the elongation of isolated green pea (Pisum sativum L. var Alaska) stem segments. Illumination of segments maintained under anoxia causes a resumption of growth. Polarographic studies show pea stem segments are photosynthetically competent as determined by O2 evolution. Although O2 production is totally inhibited by dichlorophenyldimethylurea (DCMU) and dinitrophenol (DNP) inhibits O2-dependent growth, neither DCMU nor DNP completely abolishes light-dependent growth, although both reduce the effect markedly. Phenazine methosulfate promotes the growth of anaerobically maintained, illuminated, DCMU-treated segments. The data indicate that the principal effect of light in inducing growth under anaerobic conditions is the photosynthetic provision of O2 for respiration. There is also some evidence that, at least in the absence of O2, a small amount of elongation is due to some other light-driven process, perhaps cyclic photophosphorylation.  相似文献   

8.
The responses of two aquatic plants, arrowhead (Sagittaria pygmaea Miq.) and pondweed (Potamogeton distinctus A. Benn), to anoxia were compared with those of rice (Oryza sativa L.). Shoot elongation of arrowhead tubers was enhanced at around 1 kPa O2, whereas that of pondweed turions was slight in air and reached a maximum in the absence of O2. Anaerobic enhancement of alcohol dehydrogenase (ADH) activity took place in rice coleoptiles but not in arrowhead and pondweed shoots. Shoots of both arrowhead and pondweed maintained a more stable energy status than did the rice coleoptile under anaerobic conditions. Total adenylate nucleotide contents of arrowhead and pondweed shoots were constant under anaerobic conditions. Adenylate energy charge in both shoots remained at a high and stable level of more than 0·8 for at least 8 d. Three forms of ADH from arrowhead shoots were separated by starch gel electrophoresis, showing that the activity of each ADH form was different under aerobic and anaerobic conditions. The incorporation of 35S-labelled Cys and Met into soluble proteins in arrowhead shoots showed active protein biosynthesis and an involvement of a special set of polypeptides in the anaerobiosis.  相似文献   

9.
The metabolism of lipids, like that of other components, was adversely and strongly affected when rice (Oryza sativa L.) coleoptiles were grown anaerobically. In aerobic coleoptiles, the amounts of total fatty acid, phospholipid, and total lipid per coleoptile increased by 2.5- to 3-fold between days three and seven, whereas under anoxia, the increases were all less than 60%. The total amount of lipid at day seven in anoxia was less than 30% of that in air. In air, the total fatty acid content at day three was 25 nanomoles per coleoptile and this increased to over 71 nanomoles per coleoptile at day seven. All acids except 18:0 showed substantial increases. In anoxia, the corresponding values for total fatty acids were 24 nanomoles and 27 nanomoles. The small increases were confined to the saturated fatty acids; no significant increase occurred in unsaturated fatty acids. A minor fatty acid constituent (16:1) increased from 0.09 to 1.99 nanomoles per coleoptile between days three and seven in air. This component was never observed in any fatty acid preparation from anaerobic coleoptiles. The major phospholipids under all conditions were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid. A small amount of unidentified phosphoester, not present on thin layer chromatography plates from aerobic coleoptiles, was seen in extracts of anaerobic coleoptiles. The fatty acyl substituents of each of the phospholipids were analyzed at days three and seven in coleoptiles grown aerobically and in anoxia. Each phospholipid had its own distinctive fatty acid composition which remained fairly constant under all treatments; 16:0 and 18:2 were the most abundant fatty acids in every phospholipid class. In air, the percentages of total fatty acids that were in the phospholipids were 86% on day three and 87% on day seven. In anoxia, the values at the corresponding ages were 47 and 57%. Since no net synthesis of unsaturated fatty acids occurred in anaerobic conditions, the small increase in total unsaturated acids in the phospholipids between days three and seven must have occurred at the expense of fatty acids preexisting in the neutral lipid. No unusual pathways of biosynthesis or unusual precursors are required to explain the presence of unsaturated fatty acids in the rice coleoptile. The present study and results of experiments where coleoptiles were fed [14C]acetate (BB Vartapetian et al. 1978 Plant Sci Lett 13:321-328) clearly show that unsaturated fatty acid synthesis in rice coleoptiles requires O2, as it does in other plants.  相似文献   

10.
Abstract: We studied the effects of anoxia on α-amylase induction, comparing rice ( Oryza sativa L.) and barley ( Hordeum vulgare L.) grains. While gibberellic acid (GA3) induces α-amylase in rice half-grains under either aerobic or anaerobic conditions, barley half-grains are insensitive to this hormone when applied under anoxia. The possible repressive role of ethanol and abscisic acid (ABA) was investigated. Exogenously added ethanol at concentrations mirroring those found in anaerobically treated tissues was unable to repress α-amylase. The level of ABA in anoxic tissues was found to be much lower than the threshold for α-amylase repression. Overall, the results indicated that these two compounds cannot be held responsible for the failure of barley grains to respond to gibberellic acid. Furthermore, anoxia repressed the induction of α-amylase downstream of the slender mutation, indicating that the repression is independent of effects related to gibberellin perception. Overall, the results suggested that the ability of rice to respond to gibberellins under anoxia is an adaptative trait, independent of known negative regulators of α-amylase induction.  相似文献   

11.
Shoots of germinating rice (Oryza sativa L.) seedlings are able to grow under anoxia and to withstand long periods of anoxic treatment. Mitochondria were purified from aerobically germinated and anaerobically treated rice shoots by differential and isopycnic centrifugation and were found to consist of two subpopulations. The mitochondrial subpopulation of higher density was used for further characterization. Ultrastructural studies showed anaerobic mitochondria to be significantly different from aerobic mitochondria, with a matrix of lower density and more developed cristae. Aerobic and anaerobic mitochondria also differed in their specific activities for fumarase and succinate dehydrogenase, which were significantly lower after the anoxic treatment. In vivo labeling of seedlings with l-[35S]methionine and subsequent isolation of the mitochondria indicated that anoxia induced a drastic decrease, but not a total inactivation, of the synthesis of mitochondrial proteins. In organello protein synthesis showed that anaerobic mitochondria were able to synthesize most of the polypeptides synthesized by aerobic mitochondria, although only in the presence of exogenous ATP, as would occur under anoxia. Anaerobic mitochondria, but not aerobic mitochondria, could carry out protein synthesis without a functional respiratory chain. Thus, mitochondrial protein synthesis was found to be potentially functional in the rice shoot under anoxia.  相似文献   

12.
13.
Differences in tolerance to submergence and anoxia exhibited by cultivar-specific rice (Oryza sativa L.) extend to the primary root tips and axes of 3-day-old seedlings. This paper considers the physiological mechanisms which might account for rice root intolerance to anoxia, particularly those implicated in pH regulation and sugar metabolism in relation to hypoxic acclimation. Hypoxic treatment and the presence of glucose during anoxia did not permit root tips and axes of intolerant cultivars to survive 24-h anoxia. The absence of typical glycolytic and fermentative enzyme induction together with no improvement of ethanol production and energy status during anoxia suggest that intolerant cultivars are not capable of hypoxic acclimation at the level of energy and sugar metabolism. However, root tip survival was enhanced in buffered medium after hypoxic treatment, suggesting a relationship between hypoxic treatment and improved pH regulation.  相似文献   

14.
Vacuolar H+-pyrophosphatase (V-PPase) expression increases in a number of abiotic stresses and is thought to play a role in adaptation to abiotic stresses. This paper reports on the regulation of six V-PPase genes in rice (Oryza sativa L.) coleoptiles under anoxia, using flood tolerant and intolerant cultivars to test our hypothesis. Quantitative PCR analysis showed that one vacuolar H+-pyrophosphatase (OVP3) was induced by anoxia, particularly in flood-tolerant rice. Regulation of OVP3 expression under anoxia was investigated by analysing putative OVP promoters. The putative OVP3 promoter contained more previously identified anoxia-inducible motifs than the putative promoters of the other five OVP genes. GUS activity in transgenic rice plants containing the OVP3 promoter region linked to the GUS reporter gene was induced only by anoxia. Salt and cold treatments had little effect on OVP3 promoter-driven GUS expression when compared to the anoxic treatment.  相似文献   

15.
Young intact plants of maize (Zea mays L. cv INRA 508) were exposed to 2 to 4 kilopascals partial pressure oxygen (hypoxic pretreatment) for 18 hours before excision of the 5 millimeter root apex and treatment with strictly anaerobic conditions (anoxia). Hypoxic acclimation gave rise to larger amounts of ATP, to larger ATP/ADP and adenylate energy charge ratios, and to higher rates of ethanol production when excised root tips were subsequently made anaerobic, compared with root tips transferred directly from aerobic to anaerobic media. Improved energy metabolism following hypoxic pretreatment was associated with increased activity of alcohol dehydrogenase (ADH), and induction of ADH-2 isozymes. Roots of Adh1 mutant plants lacked constitutive ADH and only slowly produced ethanol when made anaerobic. Those that were hypoxically pretreated acclimated to anoxia with induction of ADH2 and a higher energy metabolism, and a rate of ethanol production comparable to that of nonmutants. All these responses were insensitive to the presence or absence of NO3. Additionally, the rate of ethanol production was about 50 times greater than the rate of reduction of NO3 to NO2. These results indicate that nitrate reductase does not compete effectively with ADH for NADH, or contribute to energy metabolism during anaerobic respiration in this tissue through nitrate reduction. Unacclimated root tips of wild type and Adhl mutants appeared not to survive more than 8 to 9 hours in strict anoxia; when hypoxically pretreated they tolerated periods under anoxia in excess of 22 hours.  相似文献   

16.
Phosphate (Pi) is one of the least available plant nutrients in soils. It is associated with dynamic changes in carbon fluxes and several crucial processes that regulate plant growth and development. Pi levels regulate the expression of large number of genes including those involved in photosynthesis and carbon metabolism. Herein we show that sugar is required for Pi starvation responses including changes in root architecture and expression of phosphate starvation induced (PSI) genes in Arabidopsis. Active photosynthesis or the supplementation of sugar in the medium was essential for the expression of PSI genes under Pi limiting conditions. Expression of these genes was not only induced by sucrose but also detected, albeit at reduced levels, with other metabolizable sugars. Non-metabolizable sugar analogs did not induce the expression of PSI genes. Although sugar input appears to be downstream of initial Pi sensing, it is absolutely required for the completion of the PSI signaling pathway. Altered expression of PSI genes in the hexokinase signaling mutant gin2 indicates that hexokinase-dependent signaling is involved in this process. The study provides evidence for requirement of sugars in PSI signaling and evokes a role for hexokinase in some components of Pi response mechanism.  相似文献   

17.
Succinate-ubiquinone oxidoreductase (SQR) from Escherichia coli is expressed maximally during aerobic growth, when it catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle and reduces ubiquinone in the membrane. The enzyme is similar in structure and function to fumarate reductase (menaquinol-fumarate oxidoreductase [QFR]), which participates in anaerobic respiration by E. coli. Fumarate reductase, which is proficient in succinate oxidation, is able to functionally replace SQR in aerobic respiration when conditions are used to allow the expression of the frdABCD operon aerobically. SQR has not previously been shown to be capable of supporting anaerobic growth of E. coli because expression of the enzyme complex is largely repressed by anaerobic conditions. In order to obtain expression of SQR anaerobically, plasmids which utilize the PFRD promoter of the frdABCD operon fused to the sdhCDAB genes to drive expression were constructed. It was found that, under anaerobic growth conditions where fumarate is utilized as the terminal electron acceptor, SQR would function to support anaerobic growth of E. coli. The levels of amplification of SQR and QFR were similar under anaerobic growth conditions. The catalytic properties of SQR isolated from anaerobically grown cells were measured and found to be identical to those of enzyme produced aerobically. The anaerobic expression of SQR gave a greater yield of enzyme complex than was found in the membrane from aerobically grown cells under the conditions tested. In addition, it was found that anaerobic expression of SQR could saturate the capacity of the membrane for incorporation of enzyme complex. As has been seen with the amplified QFR complex, E. coli accommodates the excess SQR produced by increasing the amount of membrane. The excess membrane was found in tubular structures that could be seen in thin-section electron micrographs.  相似文献   

18.
Reduction–oxidation-sensitive green fluorescent proteins (roGFPs) have been demonstrated to be valuable tools in sensing cellular redox changes in mammalian cells and model plants, yet have not been applied in crops such as maize. Here we report the characteristics of roGFP1 in transiently transformed maize mesophyll protoplasts in response to environmental stimuli and knocked-down expression of ROS-scavenging genes. We demonstrated that roGFP1 in maize cells ratiometrically responds to cellular redox changes caused by H2O2 and DTT, as it does in mammalian cells and model plants. Moreover, we found that roGFP1 is sensitive enough to cellular redox changes caused by genetic perturbation of single ROS genes, as exemplified by knocked-down expression of individual ZmAPXs, in maize protoplasts under controlled culture conditions and under stress conditions imposed by H2O2 addition. These data provide evidence that roGFP1 functions in maize cells as a biosensor for cellular redox changes triggered by genetic lesion of single ROS genes even under stress conditions, and suggest a potential application of roGFP1 in large-scale screening for maize mutants of ROS signaling involved in development and stress resistance.  相似文献   

19.
In this study, the role of the rice(Oryza sativa L.)histidine kinase Os HK3 in abscisic acid(ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2O2,and polyethylene glycol(PEG) induced the expression of Os HK3 in rice leaves, and H2O2 is required for ABA-induced increase in the expression of Os HK3 under water stress. Subcellular localization analysis showed that Os HK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that Os HK3 is required for ABA-induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that Os HK3 functions upstream of the calcium/calmodulin-dependent protein kinase Os DMI3 and the mitogen-activated protein kinase Os MPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, Os HK3was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, Osrboh B and Osrboh E, and the production of H2O2 in ABA signaling. Our data indicate that Os HK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2O2 production in ABA signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号