首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Holocene climatic changes along coastal regions from south-east France to south-east Spain were studied using pollen ratios. Comparing modern pollen rain, vegetation and climate along selected transects from the Atlantic Ocean to the Mediterranean, we obtained threshold values of two different ratios corresponding to the different climatic conditions along the transects. These pollen ratios and threshold values were employed to characterize the Holocene climatic changes from nine Mediterranean coastal sites. The results were compared with data from marine and continental pollen sequences distributed in the western Mediterranean basin, and with additional regional data independent of human activity: lake-level fluctuations, alpine glacier advance and retreat chronology, 14C anomaly and cooling phases in Eastern France and Central Europe. The role of anthropogenic activities and climate on the changes in vegetation is discussed. Six major changes in vegetation cover were identified. They correspond to aridification phases that occurred around 9500–9000 yr BP (10 900–9700 cal BP), 7500–7000 yr BP (8400–7600 cal BP), 4500–4000 yr BP (5300–4200 cal BP), 3700–3300 yr BP (4300–3400 cal BP), 2600–1900 yr BP (2850–1730 cal BP) and 1300–1000 yr BP (1300–750 cal BP). These arid episodes were regional responses to more global climatic changes and determined the changes in the vegetation cover. Humans undoubtedly enhanced the vegetation changes, but none the less had to adapt to these new climatic conditions.  相似文献   

2.
Ostracod and diatom assemblages, mollusc remains, plus pollen and sediment stratigraphy from three cores taken at sites 40, 80 and 135 m deep in Lake Neuchâtel, Switzerland, show distinct changes since deglaciation. Shifts are interpreted in terms both of climatic change and major changes in the catchment input caused by the Aar River entering or bypassing Lake Neuchâtel. Three palaeoenvironmental phases are recognized: (1) the Late Glacial, with the inflow of the river before 10,000 yr B.P.; (2) the early to mid-Holocene, with temporary bypassing of the river between 10,000 and 4850 yr B.P.; and (3) the mid- to late Holocene, without river input after approx. 4850 yr B.P. During periods with river input, rhythmites were deposited. Ostracods indicate a well oxygenated hypolimnion, suggesting deep ventilation enhanced by the river inflow. The diatom assemblage indicates eutrophic to mesotrophic conditions and is dominated by generally well preserved periphytic species. The high number of unidentifiable pollen suggests oxidation during transport in the river. During periods without river input, a massive calcareous silt with abundant authigenic calcite was deposited, diatoms indicate a change to mesotrophic and oligotrophic conditions, and decreased sedimentation rates and higher alkalinity enhanced the dissolution of diatoms. Terrestrial and littoral molluscs as well as periphytic diatoms indicate erosion of the shore when the lake level rose or fell with onset or offset of the river inflow. Before 12,600 yr B.P., the patchy vegetation cover led to intensive soil erosion and high sedimentation rates. The lake was still frozen during the winter months. After approx. 12,600 yr B.P. the sediment changed from clastic rhythmites to thinly bedded, non-glacial rhythmites, the vegetation cover became denser, the abundance of ostracods increased, and molluscs started to colonize the profundal zone of the lake. The Younger Dryas (approx. 10,700–10,000 yr B.P.) displays maximum abundance of ostracods, indicating deep ventilation. The transition to the Holocene is characterized by a change in the ostracod assemblage and the river bypassed the lake between approximately 10,000 and 8900 yr B.P. When the river reentered the lake after approximately 8900 yr B.P., a new ostracod species appeared. After two short periods of river bypassing between approximately 7200 and 6950 yr B.P., diatoms indicate a higher trophic level about 6000–5000 yr B.P. associated with higher erosion rates and increased nutrient input due to Neolithic agricultural activities. After approximately 4850 yr B.P. the river bypassed the lake again and the trophic level decreased. In contrast to the early to mid-Holocene periods of decreased oxygen supply, the mid- to late Holocene is characterized by deep ventilation. This is attributed to the northward retreat of the polarfront and enhanced westerlies consequent to decreased insolation after 6000 yr B.P. The change of the river flow pattern correlates with glacier oscillations and may suggest a climatic control. The final cessation of the inflow is attributed to diversion of the river consequent to isostatic uplift and late Neolithic clearance activity.  相似文献   

3.
Charcoal recovered from middens and graves in the neolithic site of Kadero, north of Khartoum, Sudan was analysed. The site lies within the semi-desert vegetation zone at present. During the occupation period (5960-5030 uncal B.P.), a scrub and thorn savanna grew around the site. It is further suggested that the vegetation during the neolithic period at Kadero was already under strong human impact through controlled fires, felling and grazing.  相似文献   

4.
该文综述了北京地区全新世以来植被演替和气候变化的相关研究资料,这些资料反映了当前阶段对该地区该时段植被与气候环境格局特征的认识。北京地区全新世早期(约12 000–8 000 cal a B.P.)植被为森林草地和/或针叶树占主导的针阔混交林,森林中阔叶树类群逐渐增多,指示了气候由寒冷干燥转为温暖湿润;全新世中期(约8 000–2 000 cal a B.P.前后)植被为暖温带针阔混交林,指示暖湿气候;全新世晚期(约2 000 cal a B.P.以来)转为森林草地和/或针叶树占主导的针阔混交林,气候转向凉干。植被演替反映的湿润度变化与季风区其它地区变化趋势一致。值得注意的是,前人研究揭示北京地区山区与平原中植被类型和类群组成已经出现空间分异。今后如能深入开展定量古气候重建研究,有可能精确描述其气候变化的过程,增进中国不同地理单元同时期气候变化的对比。  相似文献   

5.
根据孢粉分析论青藏高原西部和北部全新世环境变化   总被引:15,自引:0,他引:15  
通过对青藏高原西部班公湖钻孔和北部中昆仑山3个湖相剖面的孢粉研究,揭示青藏高原西部和北部地区全新世1万年期间植被的演替和气候变化,西部在全新世早期9900-7800yr.B.P.植被由荒漠转为草原,气候好转;中期7800-3500yr.B.P.,草原发展,气候较适宜,以7200-6300yr.B.P.为高温湿期,5500yr.B.P.和3500yr.B.P.出现干旱,晚期从3500yr.B.P.至今植被为荒漠,气候干旱,其中700yr.B.P.气候恶化。北部地区全新世时期为荒漠植被,当气候温湿时,蒿和禾本科,莎草科成份增加,藜科减少,气候干旱时则相反,北部全新世的气候分期和干湿波动与西部相近,两地在晚期气候朝干旱化发展。  相似文献   

6.
25000年以来渤海湾西岸古环境探讨   总被引:5,自引:0,他引:5       下载免费PDF全文
 本文依据孢粉、微体古生物、放射性碳测年、因子分析等资料,表明25000a,BP 以来渤海湾西岸的古植被,古地理环境演变既受气候冷暖变化的影响,又受海平面变化的制约。25000—23000a,BP 为高海平面时期,古植被为森林草甸植被,23000—12000a,BP,气候冷干,为低海平面时期,以草原植被为主,前期和后期为沼泽草甸植被。12000—5000a,BP 气候温凉或温暖湿润为海平面上升时期,为阔叶林草甸或沼泽草甸植被,5000a,BP 以来,气候变凉变干,为海退时期,古植被由沼泽草甸演变为盐生草甸。  相似文献   

7.
The Early Holocene landscape near Zutphen (The Netherlands) is reconstructed by means of microfossil, macroremain and bone analyses. In this area early Mesolithic sites were found on a river dune along a former river channel. AMS14C dating provided a detailed chronology for the sites and river channel deposits. Between ca. 9800–9600 B.P. open herbaceous vegetation was present on the river dunes. The residual channels were fringed by reed swamps and willow shrubs, with birch and poplar woodlands inland. During this period there are indications of natural or man-made burning of the reed swamp vegetation along the residual channel. Also trampling zones along the lake edge were more abundant. However, no archaeological sites were discovered in the vicinity. From ca. 9600 B.P. on, the area became more densely forested; willow, birch and poplar replaced the reed swamps along the residual channels, while pine colonised the river dunes. Archaeological finds show that early Mesolithic people inhabited the area between ca. 9400 and 9200 B.P. and between ca. 8900–8700 B.P. During the earlier period, records of Urtica, Plantago and coprophilous fungi may point to trampling and/or eutrophication as a result of the presence of large herbivores and people along the channel shores. After ca. 8700 B.P. people probably left the area when open water was no longer available in the vicinity.  相似文献   

8.
The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.  相似文献   

9.
Two14C-dated pollen profiles from mires in the steppe belt of southern Russia are presented. On the basis of these and data from earlier investigations, the Holocene forest history of the southern part of Russia and Ukraine is reconstructed. The steppe belt is very sensitive to climatic oscillations and, in particular, to changes in evapotranspiration. The most favourable climate occurred between 6000 and 4500 B.P. (6800–5200 cal. B.P.), when forest attained its maximum extent in the steppe belt. The period 4500–3500 B.P. (5200–3800 cal. B.P.) was characterised by drier climate with the most arid phase occurring between 4200–3700 B.P. (4700–4000 cal. B.P.). During arid phases, the area under forest and also peat accumulation rates declined. Subsequently, a number of less pronounced climatic oscillations occurred such as in the period 3400/3300–2800 B.P. (3600/3500–2900 cal. B.P.) when there was a return to more humid conditions. During the last 2500 years, the vegetation cover of the steppe belt in southern Russia and Ukraine took on its present-day aspect. On the one hand, there is close correlation between the Holocene vegetation history of southern Russia and Ukraine and, on the other hand, the steppe belt of Kazakhstan and transgressions in the Caspian sea. Human impact on the natural vegetation became important from the Bronze Age onwards (after 4500 B.P.; 5200 cal. B.P.). Particular attention is given to the history of Scots pine (Pinus sylvestris), which had a much wider distribution in the southern part of eastern Europe in the early Holocene. The reduction in range during recent millennia has come about as a result of the combined effects of both climatic deterioration and increased human impact.  相似文献   

10.
Qinghai Lake is the largest inland saline lake in China. it is situated in the northeastern part of the Qinghai Xizang Plateau. This paper is based on the information of the sporo-pollen assemblages of 47 samples from the drill core and surface samples. The general treads of vegetational and climatic changes since 11,000 years B. P. may be subdivided in ascending order as follows: In the first stage which corresponds to zone Ⅰ of the sporo-pollen assemlage, the vegetation during the past of 11,000–10,000 years was represented by a temperate shrub, semi-shrub and steppe, consisting of Chenopodiaceae. Artemisia, Nitraria, Ephedra and Gramineae were predominant. At the same time, some subalpine conifers, Pinus, Picea and Betula, would grow by the side of rivers and lakes, the climate was warmer and wetter than that of the Late Pleistocene. Due to the rising temperature in this zone, the Pleistocene-Holocene boundary might be estimated at about 11,000 years B. P.. The vegetation of the first stage belonges to temperate steppe with a few trees: In the second stage (ZoneⅡ of pollen), the vegetation was characterized by a temperate forest steppe during this period of 10,000 to 8,000 years B. P. Forest area apparently increased and some broadleaf deciduous and need leaf evergretn trees, such as Quercus, Betula, Pinus and Picea, grew by lakes and on mountains. At this time, the climate was warmer and wetter than that of the first stage. In the third stage (Zone Ⅲ) between B,000 and 3,500 years B. P, The vegetation was composed of a temperate mixed broad-leaf deciduous and needle-leaf evtrgreen forest. The needle-leaf evergreen forest consisting of Picea, Pinus, Abies, Betula grew in temperate zone mountains. The climate was relatively warm and wet. The fouth stage (zone IV), the vegetation was dominated by shrub semishrub, dwarf semishrubs, steppe and semi-arbors. Some trees consisting of Betula, Picea, and Pinus decreased in number in the lake regions. Some subalpine cold temperature evergreen trees, such as Abies and picea disappeared from the lake region. This indicated that the climate was warmer and drier during the past 3500–1500 years B. P. than the third zone. In the fifth stage (pollen zone V), the vegetation comprised steppe and desert from 1500 years ago to the present time. Some arborealtrus such as Betula and Pinus were less increased about 500 years B. P. at this time the temperate and wet slightly, rose up. From the above analysis, it is clear that the Qinghai lake region has been confronted with the vegetational and climatic changes since ll,000 years B. P. Therefore, the palynoflora of the Qinghai lake has its significance in Geography and vegetational history.  相似文献   

11.
A pollen diagram from Oursi in Burkina Faso is compared with anthracological (charcoal analysis) results from three sites in northeast Nigeria (Konduga, Gajiganna, Lantewa). The present-day vegetation at all four sites is Sahelian or Sahelo-Sudanian and under heavy human impact. At Oursi, a closed grassland with only few trees and almost no Sudanian elements can be reconstructed for the middle Holocene. At the Nigerian sites, on the other hand, Sudanian woody plants were present during this period. We assume that the Sahel was not a uniform zone during the middle Holocene but rather a mosaic of different vegetation types according to local site conditions. In the light of these results, a simple model of latitudinally shifting vegetation zones is not applicable. Around 3000 B.P. the closed grassland at Oursi was opened by agro-pastoral activities, and at Gajiganna, plants characteristic of pasture lands can be directly related with the presence of cattle. Human impact seems to have been the dominant factor in the vegetation history of the Sahel from 3000 B.P. until today, masking possible effects of climatic change.  相似文献   

12.
Abstract. Analysis of pollen, charcoal and loss-on-ignition in peat cores from a Picea aèies-dominated swamp forest in central Sweden show the vegetation changes and disturbance patterns over 9500 yr. Six major sequences of local vegetation development are identified: (A) Pinus period, ca. 9500–7000 cal. BP; (B) Open mire period (ca. 7000–4500 cal. BP; (C) Betula period, ca. 4500–2300 cal. BP; (D) Picea period (ca. 2300–1000 cal. BP; (E) Human impact period (ca. 1000–100 cal. BP); and (F) Period of human abandonment during the last ca. 100 yr. The swamp forest has been highly dynamic in response to various natural and anthropogenic disturbance agencies. Several fires have heavily influenced the vegetation development. During the last ca. 900 yr human influence has been important, initially from grazing and trampling by domesticated animals (ca. 1000–500 cal. BP), and subsequently small-scale cereal growing (ca. 400–100 BP). Cutting, burning and animal browsing influenced the structure and dynamics of the swamp forest by creating a more open stand and suppressing tree regeneration. Recent cessation of human impact has led to increased tree regeneration and a denser swamp forest stand. The present high biodiversity, and subsequent conservation interest does not result from long-term stability or absence of fire and human impact. However, in spite of repeated disturbances, a continuity of old and senescent trees produced a forest type with abundant dead wood. With the relatively minor importance of fire over long periods of time, the swamp forest developed a structure maintaining a high biological diversity. An important issue for maintaining long-term biodiversity in the boreal landscape must be to create a mosaic where different forest types are present, with a variety of structures, substrates and processes, to provide a certain degree of freedom for species to move around in the landscape.  相似文献   

13.
By comparison with the major modern plant communities of southern Patagonia, the changing post-glacial vegetation of the region is reconstructed from macrofossils derived from deposits in the Cueva del Mylodon, Ultima Esperanza, S. Chile. The oldest deposits, carbon-dated as c. 12,400 B.P., comprise dung of the extinct ground sloth Mylodon darwinii and show the animal to have fed entirely on Cyperaceae, Gramineae and species associated with these in the modern cool, wet sedge-grasslands of western Patagonia, communities which would be expected after the retreat of the ice. Overlying deposits of well-preserved, wind-blown leaf-litter permitted some quantitative analyses which show a rise of evergreen forest dominated by Nothofagus betuloides that reached its maximum c. 7000 B.P. and then declined as it was replaced by deciduous N. pumilio forest. A break in the fossil plant record, covering the human occupation about 5643 B.P. and the subsequent final appearance of Mylodon remains, is followed by evidence of mixed evergreen/deciduous forest in which Nothofagus pumilio gradually increases in importance to give deciduous forest some 2500 years ago similar to that found in the environs of the cave in historical times. Comparison with pollen diagrams shows that the modern climatic and vegetation difference between E. Fudgia and Ultima Eeperanza has persisted throughout the post-glacial period.  相似文献   

14.
In the sediments of both of the investigated lakes, the tephra from the Mercato-Ottaviano eruption (Vesuvius, southern Italy) (ca. 7900 B.P.) could be identified. The palynological investigations show that from ca. 9000-7200 B.P. (8000-6000 cal B.C.) deciduous oak forests predominated, with only a few representatives of Mediterranean vegetation. At the transition to the central European Atlantic Period those forests changed to an open vegetation type, dominated byJuniperus andPhillyrea. At about 5500 B.P. (4400 cal B.C.), theJuniperus-Phillyrea vegetation was replaced byQuercus ilex woodland that still occurs on the island of Mljet today and is considered to be the natural vegetation of the Dalmatian coastland. The associated vegetation of theQ. ilex forests changed several times. At the beginning of theQ. ilex period,Juniperus values were still high, but soon they decreased andErica spread. In more recent times theQ. ilex forests were partially replaced by plantations ofPinus halcpensis. Indicators of human impact are sparse throughout the pollen record. Clear evidence for human influence exists only from ca. 3100 B.P. (1300 cal B.C.) whenJuglans andPinus halepensis were introduced to the area. Later,Olea andSecale cultivation can be suggested and further spreading ofJuniperus indicates use of the land as pasture.  相似文献   

15.
Palynological studies have been carried out on three highland peat bogs, and one situated on the Atlantic coastal plain. In the highlands, the late Pleistocene (14,000 - 10,000 uncal B.P.) vegetation was dominated by campos (grassland). Scattered stands of Araucaria forests were preserved in deep valleys. In the region of the sites at Morro da Igreja and Serra do Rio Rastro, the dominance of campos vegetation continued until about 1000 B.P. while at the Serra da Boa Vista site there was an expansion of Atlantic pluvial forest elements followed by Araucaria forests at the beginning of the Holocene. A general expansion of A. angustifolia, clearly related to a change towards an increasingly moist climate, can be dated to the present millenium. On the coastal plains, the late Pleistocene vegetation was dominated by Myrtaceae which were replaced by tropical taxa in the Holocene. The lowland profile (Poço Grande) also covers part of the upper Holocene, where the rich flora of the Atlantic pluvial forests can be characterized by taxa including Alchornea, Urticales and Rapanea. Close to the coring site, there was a repeated alternation between two different dune communities (4840 - 4590 B.P.), followed by a lake stage with aquatic plant succession (4590 - 4265 B.P.), plant communities dominated by Rapanea (4265 - 4230 B.P.) and the spread of Alchornea (4230 - 3525 B.P.). Late Pleistocene climate conditions (14,000 - 10,000 B.P.) can be described as cold and relatively dry, possibly including an equivalent of the Younger Dryas period. In the Holocene, there were changes from a warm and drier climate (10,000 -3000 B.P.) to a cool and more moist regime (ca. 3000 -ca. 1000 B.P.) and finally to a cool and very moist period (from around 1000 B.P.).  相似文献   

16.
Pollen, plant macrofossils and charcoal were analysed from a lake-sediment sequence, including a refuse layer, from the Late Mesolithic settlement at Bökeberg III, southern Sweden. The chronology was established by means of AMS-dated plant macroremains. The results of the biostratigraphical studies indicate two settlement phases (A and B), at ca. 6650-6400 B.P. (5560-5320 cal. B.C.) and ca. 6150-5800 B.P. (5200-4680 cal. B.C.), respectively. The two settlement phases are associated with periods of low lake-level contemporaneous with the second major period of low lake levels during the Holocene in southern Sweden, and thus with a period of generally drier climate. The pollen analytical data suggest only minor human impact on the local vegetation during the two settlement phases. Three elm declines at ca. (1) 6200 B.P. (5200-5100 cal. B.C.), (2) 5450 B.P. (4340 cal. B.C.), and (3) 5150 B.P. (3980 cal. B.C.) are discussed. Elm decline 3 is synchronous with the classical north-west European elm decline. Elm declines 2 and 3 may be due to outbreaks of elm disease rather than to strong human impact or climate change. The charcoal analyses show that wood of a wide range of species was collected for fuel or other purposes. During phase A, plants used included acorns, hazelnuts and, possibly, Cornus sanguinea, and also Prunus spinosa, Sorbus aucuparia and Rubus idaeus. There is convincing evidence that Cladium mariscus was used for thatching. The second occupation phase, B, is characterised by the use of hazelnuts for food. The possible use of several other identified species is discussed.  相似文献   

17.
Archaeobotanical results based on a limited number of samples from three aceramic sites dating from 9800 to 7800 B.P., which are under excavation in the valley of the Middle Euphrates, are discussed. The finds are presented simply by presence, and are compared to the contemporary vegetation and finds from similar sites. Carbonised plant remains recovered by flotation from levels dated to between 9800 and 9200 B.P. (Dja'de and Jerf al Ahmar) indicate that wild cereals (einkorn wheat, rye and barley) and pulses (lentils, pea and bitter vetch) were exploited. Other plants such as wild grasses, Pistacia, wild almond and oak, suggest that the local vegetation provided a rich diversity of resources. A study of possible weed taxa is being carried out in order to see whether this assemblage could be used to identify the cultivation of morphologically wild cereals for this period. Ninth millennium B.P. levels at Halula see the appearance of domestic crops such as emmer, naked wheat and barley, but wild-type cereals persist. The cultivars appear to have been introduced from elsewhere and later ninth millennium B.P. species include olive and flax. Ash, vine, maple, plane, alder and elm from the gallery forest, wild rye, wild einkorn, deciduous oak, wild almond, Pistacia, and Pyrus, from the hinterland, indicate cooler conditions.  相似文献   

18.
通过对运城盆地典型黄土-古土壤剖面磁化率和炭屑含量的分析,研究了洪积扇全新世野火活动的规律及其与环境变化的关系。研究结果表明,在全新世早期(11500~8500 a B.P.), 气候向温湿过渡,但仍较干旱,炭屑含量较高,野火活动比较频繁,说明气候干旱是野火发生的重要原因。而全新世中期(8500~3100 a B.P.),除夏商文化时期外,炭屑含量在整个全新世时期居于最低,野火活动最为微弱,与此时期气候温暖湿润密切相关。但在夏商文化时期(3800~3500 a B.P.)炭屑浓度出现峰值,野火活动较为频繁,是人类生产和生活活动作用的结果。全新世晚期(3100~0 a B.P.)炭屑含量大幅度增加,野火活动最为频繁,一方面与气候向干旱化发展有关,另一方面与大范围的人类活动密切相关;在干旱的气候背景条件下, 人类活动加速了野火的发生频率和活动强度。  相似文献   

19.
吉林省敦化地区晚全新世泥炭沼泽孢粉组合特征及古植被   总被引:2,自引:0,他引:2  
对大桥泥炭地的孢粉进行了分析和年龄测定.根据孢粉组合、地层特征和14C年龄将剖面划分为4个孢粉带,分别为2 195±70~2 045±70 yr B.P.松为主的松-云冷杉-榛-栎-苔草组合带、2 045±70~1 745±70 yr B.P.苔草为主的松-桦-榛 胡桃-苔草组合带、1 745±70~705±70 yr B.P.松-榛-鹅耳枥-苔草-毛茛组合带和705±70 yr B.P.~1 950 yr A.D.松-云冷杉-桦-苔草组合带.周围植被由温带山地针叶林(类似现今海拔1 100 m以上)、温带针阔混交林下部(类似现今海拔400~600 m)和温带针阔混交林中部(类似现今海拔600~800 m)过渡到温带针阔混交林上部(类似现今海拔800~1 100 m).相应地,泥炭沼泽经历了孕育期、蓬勃发展期、继续扩张期和消亡期.  相似文献   

20.
Pollen records of Holocene sediment cores from the Costa Rican Cordillera de Talamanca (La Chonta bog, 2310 m and La Trinidad bog, 2700 m) show the postglacial development of the montane oak forest zone from ca. 9500 to 1500 yr BP. During the early Holocene (ca. 9500–700 yr BP), alder vegetation covered the La Chonta and La Trinidad bogs and their adjacent hills. The upper forest line is inferred to be at 2800–3000 m elevation. A Podocarpus-Quercus forest characterised the middle Holocene (ca. 7000–4500 yr BP). The upper forest line is located at >3000 m reaching the present-day altitudinal distribution. A Quercus forest characterised the late Holocene (ca. 4500–1500 yr BP). Compared to modern conditions, the early Holocene has similar average temperatures, but the moisture level was probably higher. Pollen evidence for the late Holocene indicates drier environmental conditions than today. In order to improve the paleoecological interpretation, we described the local vegetation and used moss samples as pollen traps at both montane bogs along strong soil moisture gradients.The Netherlands Centre for Geo-ecological Research, ICG  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号