首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
B. K. Dutta 《Plant and Soil》1981,63(2):209-216
Summary Biological control of Verticillium wilt disease with antagonistic micro-organisms was studied. Antagonism of some fungi, isolated from tomato rhizosphere, toVerticillium albo-atrum R & B. was observedin vitro. A clearly defined zone, in which the growth of the pathogen was inhibited, was observed withPenicillium spp. (includingPenicillium chrysogenum Thom) andFusarium culmorum (S.G. Sm) Sacc., whileTrichoderma viride pers. ex Fries,Gliocladium spp. andPenicillium vermiculatum Dangeard, suppressed the growth ofV. albo-atrum by penetrating, and overgrowing it. OnlyT. viride andP. vermiculatum culture filtrate added to the Dox's agar, reduced the radial growth ofV. alboatrum. Root-dip application of culture filtrates ofT. viride andP. chrysogenum was found to be most effective in controlling the disease, followed by other species ofPenicillium andGliocladium spp. WhileFusarium culmorum provided no control. Improvement of plant height and vigour with a better yield due to culture filtrate treatment occurred. Root-dip application of antagonistic fungal propagules (T. viride, P. chrysogenum) to tomato seedlings was also very effective in controlling wilt in tomato plants grown inV. albo-atrum infested soil. Dedicated to the memory of the late Prof. Ivor Isaac with whom I had the pleasure of working  相似文献   

2.
The growth of fungi causing apple replant disease (ARD) was inhibited by the addition of N and P to the growing medium. The population of bacteria antagonistic to ARD-causing fungi was significantly increased in the growing medium supplemented with N 400 P 400 mg/l or greater. The application of nitrogen alone or in combination with phosphorus to soil infested with fungi or bacteria that cause apple replant disease significantly increased seedling height. The addition of P alone to these infested soils did not have any effect on seedling height. Significant increases in seedling height occurred with N applications when seedlings were grown in soil to which bacteria that are antagonistic to fungi causing ARD had been added. These results suggest that the application of N, with or without P, to apple replant soils may suppress the growth of ARD-causing fungi or bacteria and promote the growth of antagonistic bacteria.  相似文献   

3.
B. K. Dutta 《Plant and Soil》1981,63(2):217-225
Summary In vitro study showed thatVerticillium dahliae Kleb. grew well in a wide range of acid and alkaline media (viz. pH 3.5 to 10.5). The best growth of the fungus was observed in pH 5.5. Soil pH 3.5 was toxic for growing antirrhinum seedlings. Development of Verticillium wilt of antirrhinum was affected by soil pH. The severity of the disease was greater in alkaline soil conditions compared with acid conditions. Soil of pH 3.5 gave very good control of the symptom expression by the infected plants. Rhizosphere analysis results showed that fungal population with the exception ofPenicillium spp., was drastically reduced in the rhizosphere of the plants grown in acid soil. Although the overall population of fungi was reduced in theV. dahliae infected antirrhinum rhizosphere in acid soil, the population ofPenicillium spp. markedly increased. The antagonistic activity of thePenicillium spp. in the rhizosphere might also have reduced the disease severity. Since the seedlings did not grow properly in very dry and very wet soil, rhizosphere analysis of these soils was not possible. Disease severity was much less in wet soil compared with plants grown in medium moisture level and dry soil, but the plant growth was very poor. Dedicated to the memory of the late Prof. H. K. Baruah from whom I had the inspiration for research  相似文献   

4.
Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found.  相似文献   

5.
Rhizoctonia solani isolates varying in their virulence were tested for their ability to produce oxalic acid (OA) in vitro. The results indicated that the virulent isolates produced more OA than the less virulent isolates. In order to isolate OA-detoxifying strains of Pseudomonas fluorescens, rhizosphere soil of rice was drenched with 100 mM OA and fluorescent pseudomonads were isolated from the OA-amended soil by using King's medium B. These isolates were tested for their antagonistic effect towards growth of R. solani in vitro. Among them P. fluorescens PfMDU2 was the most effective in inhibiting the mycelial growth of R. solani. P. fluorescens PfMDU2 was capable of detoxifying OA and several proteins were detected in the culture filtrate of PfMDU2 when it was grown in medium containing OA. To investigate whether the gene(s) involved in OA-detoxification resides on the plasmids in P. fluorescens PfMDU2, a plasmid-deficient strain of P. fluorescens was generated by plasmid curing. The plasmid-deficient strain (PfMDU2P-) failed to grow in medium containing OA and did not inhibit the growth of R. solani. Both PfMDU2 and PfMDU2P- were tested for their efficacy in controlling sheath blight of rice under greenhouse conditions. Seed treatment followed by soil application of rice with P. fluorescens strain, PfMDU2, reduced the severity of sheath blight by 75% compared with the control, whereas PfMDU2P- failed to control sheath blight disease.  相似文献   

6.
Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed.  相似文献   

7.
In Spain, Verticillium wilt, caused by Verticillium dahliae, is the most important disease of cotton and olive. Isolates of V. dahliae infecting these crops can be classified into highly virulent, defoliating (D), and mildly virulent, nondefoliating (ND), pathotypes. Infested soil is the primary source of inoculum for Verticillium wilt epidemics in cotton and olive, and severity of disease relates to the prevailing V.dahliae pathotype. In this work we have adapted the use of previously developed primer pairs specific for D and ND V. dahliae for the detection of these pathotypes by nested PCR in artificial and natural soils. Success in the detection procedure depends upon efficiency in extracting PCR-quality DNA from soil samples. We developed an efficient DNA extraction method from microsclerotia infesting the soil that includes the use of acid washed sand during the grinding process and skimmed milk to avoid co-purification of Taq-polymerase inhibitors with DNA. The specific nested-PCR procedure effectively detected 10 or more microsclerotia per gram of soil. The detection procedure has proven efficient when used with a naturally infested soil, thus demonstrating usefullness of the diagnostic method for rapid and accurate assessment of soil contamination by V. dahliae pathotypes.  相似文献   

8.
Summary A study of the inorganic amendments (N, P and K) to soil, and their effect on the rhizosphere microflora, as well as their relation to the control of wilt of antirrhinum plants caused byVerticillium dahliae Kleb. was done. Ammonium sulphate was the only chemical found to be significantly inhibitory toV. dahliae in vitro. Soil amendments (NPK) affected the rhizosphere microorganisms of the antirrhinum plants. Higher concentration of the chemicals were phytotoxic. It was further observed that ammonium sulphate, and the combined chemicals (NPK 25%) in soil delayed the senescence in healthy plants, suggests that chemical fertilisers affected the host plants directly. Addition of ammonium sulphate (0.25%), calcium nitrate (0.25%, 0.5%) combined NPK (0.25%) to soil caused considerable reduction in disease severity. It is assumed that this reduction may be caused by the (1) fungitoxic nature of the chemicali.e. ammonium sulphate, (2) antagonistic environment for the pathogen in the rhizosphere was boostedi.e. where calcium nitrate was added as soil amendments and (3) reduction in disease severity in soil-amended with combined NPK, may be due to the fact that antagonistic actinomycete population was boosted in the rhizosphere.  相似文献   

9.
The biological activities of a sterile red fungus (SRF) capable of plant growth promotion and suppression of take-all disease were investigated in soils collected from Lancelin, Newdegate and Mt. Barker regions of Western Australia. Further, the effects of three wheat cultivars and the presence of two isolates ofStreptomyces on the biological activities of the SRF were tested using the Lancelin soil. The biological activities of the SRF were greatest in the Lancelin and Newdegate (wheat field) soils and with the wheat cultivar Gutha. In in vitro studies the soil streptomycetes tested showed either a significant increase in the exudate production by the SRF, which had antifungal and growth promoting properties, or an inhibition of growth of the fungus. Streptomycete A63 which stimulated the exudate production by the SRF in vitro, however, did not enhance disease protection in vivo. On the other hand, protection from root rot by the SRF in vivo was reduced in the presence of the streptomycete isolate Ax which is capable of inhibiting the growth of the SRF in vitro.  相似文献   

10.
Adaptive Zn and Cd tolerance have evolved in populations of the ectomycorrhizal fungus Suillus luteus. When exposed to high concentrations of both metals in vitro, a one-sided antagonism was apparent in the Zn- and Cd-tolerant isolates. Addition of high Zn concentrations restored growth of Cd-stressed isolates, but not vice versa. The antagonistic effect was not detected in a S. luteus isolate from non-contaminated land and in Paxillus involutus. The fungi were inoculated on pine seedlings and subsequently exposed to ecologically relevant Zn and Cd concentrations in single and mixed treatments. The applied doses severely reduced nutrient acquisition of non-mycorrhizal pines and pines inoculated with metal-sensitive S. luteus. Highest translocation of Zn and Cd to shoots occurred in the same plants. Seedlings inoculated with fungi collected from the polluted site reduced metal transfer to their host and maintained nutrient acquisition under high metal exposure. The isolate showing highest tolerance in vitro also offered best protection in symbiosis. The antagonistic effect of high Zn on Cd toxicity was confirmed in the plant experiment. The results indicate that a Zn- and Cd-polluted soil has selected ectomycorrhizal fungi that are able to survive and protect their phytobiont from nutrient starvation and excessive metal uptake.  相似文献   

11.
双歧杆菌体外对STM拮抗作用的实验研究   总被引:3,自引:1,他引:2  
研究休外双歧杆菌对鼠伤寒沙门菌的拮抗作用,方法将两歧双歧杆菌STM混合培养。观察STM生长情况。结果STM和B.bifidum混合培养与STM单独培养对照相比较,菌量明显降低。结论B.bifidum在体外对STM有拮抗作用。  相似文献   

12.
To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere.  相似文献   

13.
K Chan  O C Leung 《Microbios》1979,25(100):71-84
Chemically defined media have been developed for the growth of two moderately halophilic bacteria, Micrococcus morrhuae K-17 and Micrococcus luteus K-15. M. morrhuae K-17 grows well in a synthetic medium (SM-1) which contains a number of salts, 0.21 M KCl, 2 M NaCl, D-mannose, five vitamins and ten amino acids. The synthetic medium (SM-2) for M. luteus K-15 contains a number of salts, 0.21 M KCl, 1 M NaCl, D-fructose, nine vitamins and nine amino acids. Nutritional studies show that M. morrhuae K-17 can utilize a large number of organic compounds as carbon and energy source while the ability of M. luteus K-15 in utilizing the organic compounds is rather limited. The minimum salt requirement is 0.5 M NaCl for both strains when growth at the optimum temperature of 30 degrees C. However, this requirement can be lowered to 0.2 M in M. luteus K-15 when grown at a lower temperature of 25 degrees C. It is concluded that the ability to grow in a wider range of salt concentrations in response to temperature is species specific in moderate halophiles. The salt range for growth to occur can be extended when cells of both strains are grown in complex medium which might provide the amino acids and growth factors that cannot be synthesized by these strains at high salt concentrations.  相似文献   

14.
The addition of trimethoprim to Mueller-Hinton medium was found to improve the sensitivity of test bacteria towards sulfonamides by 20—50 times. Depending on the test bacteria used, the optimal concentrations of trimethoprim added to the medium are 1 μg per ml (Micrococcus luteus), 0.25 μg per ml (Bacillus stearothermophilus var. calidolactis) and 0.1 μg per ml (Bacillus megaterium). Using Micrococcus luteus or Bacillus megaterium a concentration of 0.25 μg sulfanilamide per ml may be detected, and 0.1 μg per ml may be detected when Bacillus stearothermophilus var. calidolactis is used.  相似文献   

15.
棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性   总被引:20,自引:0,他引:20  
从土贝母和腊肠等中药和发酵食品中筛选出对棉花枯萎、黄萎病菌有广谱拮抗作用的芽孢杆菌29株,其中有12株菌产抗菌蛋白。有5株抑菌活性较强:H110、H184、H216、B316和B382。经初步鉴定,H110和H184为枯草芽孢杆菌,H216、B316和B382为地衣芽孢杆菌。5株菌的蛋白粗提液对热稳定,对蛋白酶K、胰蛋白酶均不敏感,但H184、H216的蛋白粗提液对胃蛋白酶部分敏感。  相似文献   

16.
【背景】目前利用拮抗菌进行作物病害防治的研究较多,但拮抗菌次生代谢产物如何影响棉花根际土壤微生物群落相关的研究较少。【目的】探讨枯草芽孢杆菌J-15抗大丽轮枝菌次生代谢产物对棉田土壤真菌多样性的影响,为利用枯草芽孢杆菌J-15及其次生代谢产物防治棉花黄萎病的土壤微生物生态安全进行评估。【方法】以新疆北部玛纳斯地区棉田为土壤采样点,随机选取10个点进行采样后混合,经枯草芽孢杆菌J-15抗大丽轮枝菌次生代谢产物处理一定时间后,提取土样总DNA,利用Illumina HiSeq高通量技术,对样品中真菌ITS1-ITS2区进行高通量测序,分析J-15抗大丽轮枝菌次生代谢产物处理对土样真菌多样性的影响。【结果】在97%相似度水平下,处理10、30d后,样品中真菌的OTU数量、Chao1和ACE丰度指数均分别高于相同时间放置的未处理的对照组,而Simpson指数低于其对照组。从群落组成分析来看,与对照组相比,受J-15次生代谢产物处理的土壤样品,子囊菌门(Ascomycota)的盘菌属(Tricharina)和被孢霉门(Mortierellomycota)的被孢霉属(Mortierella)等优势真菌相对丰度提高,而丰度高于1%的2类病原真菌轮枝孢属(Verticillium)、镰孢霉属(Fusarmm)的丰度显著降低。【结论】J-15抗大丽轮枝菌次生代谢产物对棉田土壤真菌群落及丰度有显著影响,但不改变影响农业生产的土壤真菌群落的结构。  相似文献   

17.
【背景】棉花黄萎病是由大丽轮枝菌(Verticillium dahliae Kleb.)引起的一种世界性病害,近年来对该病害的生物防治因具有环境友好和人畜安全的特性而倍受关注。【目的】筛选棉花黄萎病高效拮抗细菌并对其进行鉴定,为棉花黄萎病的生物防治扩充菌种资源。【方法】采用稀释涂布平板法分离细菌,并进行拮抗细菌的初筛和复筛,通过形态特征、生理生化特征和16S rRNA基因序列分析对筛选到的细菌进行鉴定,确定其分类地位。【结果】初筛分离到535株对病原菌具有拮抗作用的细菌,并选取了108株拮抗细菌进行复筛,最终筛选到了4株优势拮抗细菌。通过形态观察、生理生化特征和16SrRNA基因序列分析,将菌株BHZ-29、SHT-15、SHZ-24和SMT-24分别鉴定为贝莱斯芽孢杆菌(Bacillusvelezensis)、枯草芽孢杆菌斯皮兹仁亚种(Bacillus subtilis subsp. spizizenii)、萎缩芽孢杆菌(Bacillus atrophaeus)和香草芽孢杆菌(Bacillus vanillea)。【结论】获得了4株高效拮抗细菌,并且首次报道了香草芽孢杆菌对棉花黄萎病菌具有抑制作用。  相似文献   

18.
VERTICILLIUM WILT OF BRUSSELS SPROUT   总被引:1,自引:0,他引:1  
A wilt disease of Brussels-sprout plants caused by Verticillium dahliae Kleb, is described. Field observations indicate that the disease is more severe in a wet than in a dry season, the various stages of the pathological symptoms appearing earlier and developing more rapidly. This was corroborated by experiment; under dry conditions the onset of wilt symptoms was delayed and the severity of attack diminished. Since nine different strains and/or species of Verticillium wound-inoculated into Brussels sprouts failed to induce wilt, and since the isolate from this host proved to be non-pathogenic to a wide range of plants usually susceptible to attack by Verticillium spp., it is suggested that the V. dahliae from Brussels sprouts is a distinct physiological strain. Variations in the amounts of the different chemical constituents of the soil (calcium, nitrogen from two different sources, phosphate and potassium) have no apparent effect upon the incidence of disease. The pathogen is not seed-borne but it may be spread by the dissemination of infected plant tissues. Some control measures are suggested and farmers are advised to grow in the infected soil runner beans, cauliflower and broccoli which are resistant to attack by this fungus.  相似文献   

19.
A technique was developed for assessing the saprophytic activity of Verticillium dahliae, using a strawberry root extract medium. The germination of conidia and microsclerotia, and mycelial growth in soil, was inhibited by the addition of chitin, laminarin, wheat straw and oven-dried green clover as soil amendments. A significant decrease in the number of viable propagules of the pathogen counted from soil, and in disease severity, was obtained with chitin and laminarin. More bacteria and actinomycetes were recorded from the rhizosphere of plants grown in chitin-amended soil than from those in natural soil.  相似文献   

20.
In this study, it was demonstrated, by using agar diffusion tests and a Transwell system, that Burkholderia multivorans NKI379 has an antagonistic effect against the growth of B. pseudomallei. Bacterial representatives were isolated from agricultural crop soil and mixed to construct a partial bacterial community structure that was based on the results of reproducible patterns following PCR-denaturing gradient gel electrophoresis analysis of total soil chromosomes. The antagonistic effect of B. multivorans on B. pseudomallei was observed in this imitate community. In a field study of agricultural crop soil, the presence of B. pseudomallei was inversely related to the presence of the antagonistic strains B. multivorans or B. cenocepacia. B. multivorans NKI379 can survive in a broader range of pH, temperatures and salt concentrations than B. pseudomallei, suggesting that B. multivorans can adapt to extreme environmental changes and therefore predominates over B. pseudomallei in natural environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号