首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured myofibroblasts are characterized by stress fibers, containing alpha-smooth muscle actin (alpha-SMA) and by supermature focal adhesions (FAs), which are larger than FAs of alpha-SMA-negative fibroblasts. We have investigated the role of alpha-SMA for myofibroblast adhesion and FA maturation. Inverted centrifugation reveals two phases of initial myofibroblast attachment: during the first 2 h of plating microfilament bundles contain essentially cytoplasmic actin and myofibroblast adhesion is similar to that of alpha-SMA-negative fibroblasts. Then, myofibroblasts incorporate alpha-SMA in stress fibers, develop mature FAs and their adhesion capacity is significantly increased. When alpha-SMA expression is induced in 5 d culture by TGFbeta or low serum levels, fibroblast adhesion is further increased correlating with a "supermaturation" of FAs. Treatment of myofibroblasts with alpha-SMA fusion peptide (SMA-FP), which inhibits alpha-SMA-mediated contractile activity, reduces their adhesion to the level of alpha-SMA negative fibroblasts. With the use of flexible micropatterned substrates and EGFP-constructs we show that SMA-FP application leads to a decrease of myofibroblast contraction, shortly followed by disassembly of paxillin- and beta3 integrin-containing FAs; alpha5 integrin distribution is not affected. FRAP of beta3 integrin-EGFP demonstrates an increase of FA protein turnover following SMA-FP treatment. We conclude that the formation and stability of supermature FAs depends on a high alpha-SMA-mediated contractile activity of myofibroblast stress fibers.  相似文献   

2.
Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.  相似文献   

3.
Cell shape and adhesion of cultured mammalian cells change dramatically during mitosis, however, how cell cycle-dependent alterations in cell adhesion are regulated remain to be elucidated. We show here that normal human mammary epithelial (HME) cells which became less adhesive and adopted the rounded morphology during the G(2)/M phase of the cell cycle significantly reduced their dependence on beta1 integrin-mediated adhesion to laminin, by using function blocking antibody to beta1 integrin. In G(2)/M cells, both total and cell surface expressions of beta1 integrin were comparable with those in G(1) cells but it was phosphorylated at threonines 788-789 within its cytoplasmic domain and coimmunoprecipitated Ca(2+)/calmodulin-dependent protein kinase (CaMK) II. The threonine phosphorylated beta1 integrin significantly reduced its intracellular linkage with actin, with no significant reduction in the actin expression. In contrast, beta1 integrin in G(1) cells was not threonine phosphorylated but formed a link with actin and coimmunoprecipitated the core enzyme of the serine/threonine protein phosphatase (PP) 2A. The results suggest that reduced beta1 integrin-mediated cell adhesion of HME cells to the substratum during mitosis may be induced by beta1 integrin phosphorylation at threonines 788-789 and its reduced ability to link with the actin cytoskeleton.  相似文献   

4.
Chromophore-assisted laser inactivation (CALI) is a light-mediated technique used to selectively inactivate proteins within cells. Here, we demonstrate that GFP can be used as a CALI reagent to locally inactivate proteins in living cells. We show that focused laser irradiation of EGFP-alpha-actinin expressed in Swiss 3T3 fibroblasts results in the detachment of stress fibres from focal adhesions (FAs), whereas the integrity of FAs, as determined by interference reflection microscopy (IRM), is preserved. Moreover, consistent with a function for focal adhesion kinase (FAK) in FA signalling and not FA structure, laser irradiation of EGFP-FAK did not cause either visible FA damage or stress fibre detachment, although in vitro CALI of isolated EGFP-FAK decreased its kinase activity, but not its binding to paxillin. These data indicate that CALI of specific FA components may be used to precisely dissect the functional significance of individual proteins required for the maintenance of this cytoskeletal structure. In vitro CALI experiments also demonstrated a reduction of EGFP-alpha-actinin binding to the cytoplasmic domain of the beta(1) integrin subunit, but not to actin. Thus, alpha-actinin is essential for the binding of microfilaments to integrins in the FA. CALI-induced changes in alpha-actinin result in the breakage of that link and the subsequent retraction of the stress fibre.  相似文献   

5.
Integrins are transmembrane receptors involved in crucial cellular biological functions such as migration, adhesion, and spreading. Upon the modulation of integrin affinity toward their extracellular ligands by cytoplasmic proteins (inside-out signaling) these receptors bind to their ligands and cluster into nascent adhesions. This clustering results in the increase in the mechanical linkage among the cell and substratum, cytoskeleton rearrangements, and further outside-in signaling. Based on experimental observations of the distribution of focal adhesions in cells attached to micropatterned surfaces, we introduce a physical model relying on experimental numerical constants determined in the literature. In this model, allosteric integrin activation works in synergy with the stress build by adhesion and the membrane rigidity to allow the clustering to nascent adhesions independently of actin but dependent on the integrin diffusion onto adhesive surfaces. The initial clustering could provide a template to the mature adhesive structures. Predictions of our model for the organization of focal adhesions are discussed in comparison with experiments using adhesive protein microarrays.  相似文献   

6.
Focal adhesions (FAs), sites of tight adhesion to the extracellular matrix, are composed of clusters of transmembrane integrin adhesion receptors and intracellular proteins that link integrins to the actin cytoskeleton and signaling pathways. Two integrin-binding proteins present in FAs, kindlin-1 and kindlin-2, are important for integrin activation, FA formation, and signaling. Migfilin, originally identified in a yeast two-hybrid screen for kindlin-2-interacting proteins, is a LIM domain-containing adaptor protein found in FAs and implicated in control of cell adhesion, spreading, and migration. By binding filamin, migfilin provides a link between kindlin and the actin cytoskeleton. Here, using a combination of kindlin knockdown, biochemical pulldown assays, fluorescence microscopy, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP), we have established that the C-terminal LIM domains of migfilin dictate its FA localization, shown that these domains mediate an interaction with kindlin in vitro and in cells, and demonstrated that kindlin is important for normal migfilin dynamics in cells. We also show that when the C-terminal LIM domain region is deleted, then the N-terminal filamin-binding region of the protein, which is capable of targeting migfilin to actin-rich stress fibers, is the predominant driver of migfilin localization. Our work details a correlation between migfilin domains that drive kindlin binding and those that drive FA localization as well as a kindlin dependence on migfilin FA recruitment and mobility. We therefore suggest that the kindlin interaction with migfilin LIM domains drives migfilin FA recruitment, localization, and mobility.  相似文献   

7.
Talin is a large cytoskeletal protein that is involved in coupling the integrin family of cell adhesion molecules to the actin cytoskeleton, colocalising with the integrins in focal adhesions (FAs). However, at the leading edge of motile cells, talin colocalises with the hyaluronan receptor layilin in what are thought to be transient adhesions, some of which subsequently mature into more stable FAs. During this maturation process, layilin is replaced with integrins, which are highly clustered in FAs, where localised production of PI(4,5)P2 by type 1 phosphatidyl inositol phosphate kinase type 1γ (PIPK1γ) is thought to play a role in FA assembly. The talin FERM F3 subdomain binds both the integrin β-subunit cytoplasmic domain and PIPK1γ, and these interactions are understood in detail at the atomic level. The talin F3 domain also binds to short sequences in the layilin cytoplasmic domain, and here we report the structure of the talin/layilin complex, which shows that talin binds integrins, PIPK1γ and layilin in similar although subtly different ways. Based on structure comparisons, we designed a set of talin F3 mutations that selectively affected the affinity of talin for its targets, as determined by stopped-flow fluorescence measurements. Such mutations will help to assess the importance of the interactions between talin and its various ligands in cell adhesion and migration.  相似文献   

8.
Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain-associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1-deficient mouse embryonic fibroblasts and cells expressing active beta(1) integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1-dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.  相似文献   

9.
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.  相似文献   

10.
The beta subunit cytoplasmic domains of integrin adhesion receptors are necessary for the connection of these receptors to the actin cytoskeleton. The cytoplasmic protein, talin, binds to beta integrin cytoplasmic tails and actin filaments, hence forming an integrin-cytoskeletal linkage. We used recombinant structural mimics of beta(1)A, beta(1)D and beta(3) integrin cytoplasmic tails to characterize integrin-binding sites within talin. Here we report that an integrin-binding site is localized within the N-terminal talin head domain. The binding of the talin head domain to integrin beta tails is specific in that it is abrogated by a single point mutation that disrupts integrin localization to talin-rich focal adhesions. Integrin-cytoskeletal interactions regulate integrin affinity for ligands (activation). Overexpression of a fragment of talin containing the head domain led to activation of integrin alpha(IIb)beta(3); activation was dependent on the presence of both the talin head domain and the integrin beta(3) cytoplasmic tail. The head domain of talin thus binds to integrins to form a link to the actin cytoskeleton and can thus regulate integrin function.  相似文献   

11.
12.
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.  相似文献   

13.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions.  相似文献   

14.
Integrin signaling involves oligomerization and a transmembrane conformational change induced by receptor occupancy. Previous work has shown that subsets of focal adhesion-associated proteins are recruited to integrins as a result of clustering, ligand binding, or both. However, it is unclear whether these discrete subsets reflect the differential binding of cytoplasmic proteins to the integrin or whether a single protein or set of proteins binds the integrin and is differentially activated by receptor occupancy or clustering. To address this question, we made mutations of the β1 integrin cytoplasmic domain in the context of a single subunit chimera and studied their activation of various known integrin-mediated signaling pathways. We show here that the indirect association of the integrin with actin is distinct from its interactions with both preformed focal adhesions and FAK. Therefore, multiple independent signaling pathways exist from the integrin to the focal adhesion, which may reflect the association of independent factors with the integrin β1 cytoplasmic domain. J. Cell. Physiol. 181:74–82, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

15.
Cell adhesion to laminin 1 or to fibronectin is mediated by distinct sets of integrins and is differentially regulated by protein kinase C (PKC). It suggests that upon integrin ligation to laminin 1 or to fibronectin different intracellular signaling pathways could be activated. We have therefore investigated the formation of signaling complexes induced during cell adhesion to laminin 1 or to fibronectin. Following cell adhesion to laminin 1 the re-arrangement of the cytoskeleton was slower than that observed on fibronectin and it was activated by treating the cells with H-7, an inhibitor of PKC. Conversely, treatment of laminin-adhering cells with a PKC activator resulted in a rapid disorganization of the actin cytoskeleton while a similar treatment had no effect on fibronectin-adhering cells. These results suggested that the structural organization of the adhesion complexes might be substrate-specific and might correspond to a different arrangement of cytoskeletal and/or cytoplasmic proteins. Reflection interference contrast microscopy (RICM) images revealed that cell-substratum contacts formed on laminin 1 were not well differentiated in contrast to those developed on fibronectin. However, immunofluorescence staining revealed a similar organisation of actin microfilaments, talin and phosphotyrosyl-containing proteins on both substrates. In contrast, differences were observed for vinculin distribution within cells spread on fibronectin or on laminin I. Following cell adhesion to fibronectin most of the vinculin appeared as thick patches at the tips of the actin stress fibers while in laminin-adhering cells vinculin was recruited into thin streaks localized at the end of only some actin stress fibers.  相似文献   

16.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   

17.
Integrins promote formation of focal adhesions and trigger intracellular signaling pathways through cytoplasmic proteins such as talin, alpha-actinin, and focal adhesion kinase (FAK). The beta 1 integrin subunit has been shown to bind talin and alpha-actinin in in vitro assays, and these proteins may link integrin to the actin cytoskeleton either directly or through linkages to other proteins such as vinculin. However, it is unknown which of these associations are necessary in vivo for formation of focal contacts, or which regions of beta 1 integrin bind to specific cytoskeletal proteins in vivo. We have developed an in vivo assay to address these questions. Microbeads were coated with anti-chicken beta 1 antibodies to selectively cluster chicken beta 1 integrins expressed in cultured mouse fibroblasts. The ability of cytoplasmic domain mutant beta 1 integrins to induce co-localization of proteins was assessed by immunofluorescence and compared with that of wild-type integrin. As expected, mutant beta 1 lacking the entire cytoplasmic domain had a reduced ability to induce co-localization of talin, alpha-actinin, F-actin, vinculin, and FAK. The ability of beta 1 integrin to co-localize talin and FAK was found to require a sequence near the C-terminus of beta 1. The region of beta 1 required to co-localize alpha-actinin was found to reside in a different sequence, several amino acids further from the C-terminus of beta 1. Deletion of 13 residues from the C-terminus blocked co-localization of talin, FAK, and actin, but not alpha-actinin. Association of alpha-actinin with clustered integrin is therefore not sufficient to induce the co-localization of F-actin.  相似文献   

18.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

19.
Integrins are heterodimeric transmembrane proteins that mediate substrate adhesion and migration but also the bidirectional transfer of information across the plasma membrane via their cytoplasmic domains. We addressed the question of whether the very short cytoplasmic tail of the alpha1 integrin subunit of alpha1beta1 integrin is required for alpha1beta1-specific adhesion, spreading, and migration. For this purpose we transfected the alpha1 integrin subunit and two cytoplasmically truncated alpha1 subunits into Chinese hamster ovary (CHO) cells. Elimination of the entire cytoplasmic domain of the alpha1 subunit does not affect adhesion but leads to inhibition of spreading and stress fiber formation. The defect in spreading could not be rescued by lysophosphatidic acid, which has been reported to stimulate actin stress fiber formation via Rho. Additionally, deletion of the entire cytoplasmic domain of the alpha1 subunit abolishes migration toward alpha1beta1-specific substrates. Migration and stress fiber formation are similar in CHO-alpha1 cells and CHO cells carrying an alpha1 subunit still containing the conserved GFFKR motif. So, the GFFKR motif of the alpha1 subunit is essential and sufficient for these processes.  相似文献   

20.
Integrin receptors localize to focal contact sites and interact with the cytoskeleton via the beta 1 cytoplasmic domain. To study the role of this domain in adhesion, we have expressed in NIH 3T3 cells a cDNA consisting of the interleukin 2 receptor alpha subunit extracellular and transmembrane domains, connected to the integrin beta 1 cytoplasmic domain (IL2R-beta 1). Since the extracellular domain of the chimeric protein has no role in adhesion, this protein could uncouple adhesion from intracellular events. As expected, in a cell line expressing IL2R-beta 1, this chimera was directed to focal contact sites. Unexpectedly, the cells exhibited normal adhesion to fibronectin (FN). However, when a rapid reorganization of the cytoskeleton was induced using lysophosphatidic acid (LPA), IL2R-beta 1 cells detached from FN in contrast to wild-type cells. The detachment in response to LPA could be prevented with cytochalasin D, an inhibitor of actin polymerization. These results imply that a beta 1 cytoplasmic domain, which is uncoupled from adhesion, can compete with the cytoplasmic domain of native integrin beta 1 for cytoskeletal proteins. As a consequence, the IL2R-beta 1 protein acts as a dominant negative effector of adhesion by disrupting the integrin-cytoskeleton connection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号