首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thymus and central tolerance   总被引:3,自引:0,他引:3  
T-cell differentiation in the thymus generates a peripheral repertoire of mature T cells that mounts strong responses to foreign antigens but is largely unresponsive to self-antigens. This state of specific immunological tolerance to self-components involves both central and peripheral mechanisms. Here we review the process whereby many T cells with potential reactivity for self-antigens are eliminated in the thymus during early T-cell differentiation. This process of central tolerance (negative selection) reflects apoptosis and is a consequence of immature T cells receiving strong intracellular signalling through T-cell receptor (TCR) recognition of peptides bound to major histocompatibility complex (MHC) molecules. Central tolerance occurs mainly in the medullary region of the thymus and depends upon contact with peptide-MHC complexes expressed on bone-marrow-derived antigen-presenting cells (APCs); whether tolerance also occurs in the cortex is still controversial. Tolerance induction requires a combination of TCR ligation and co-stimulatory signals. Co-stimulation reflects interaction between complementary molecules on T cells and APCs and probably involves multiple molecules acting in consort, which may account for why deletion of individual molecules with known or potential co-stimulatory function has little or no effect on central tolerance. The range of self-antigens that induce central tolerance is considerable and, via low-level expression in the thymus, may also include tissue-specific antigens; central tolerance to these latter antigens, however, is likely to be limited to high-affinity T cells, leaving low-affinity cells to escape. Tolerance to alloantigens and the possibility of using central tolerance to promote acceptance of allografts are discussed.  相似文献   

2.
The immune system must avoid aggressive T-cell responses against self-antigens. But, paradoxically, exposure to self-peptides seems to have an important role in positive selection in the thymus and the maintenance of a broad T-cell repertoire in the periphery. Recent experiments have highlighted situations that allow high-avidity self-reactive T cells to avoid negative selection in the thymus. Accumulating evidence indicates that other, non-deleting mechanisms control the avidity with which T cells recognize self-antigens--a phenomenon that is known as 'tuning'. This might maximize the peripheral T-cell repertoire by allowing the survival of T cells that can respond to self, but only at concentrations that are not normally reached in vivo.  相似文献   

3.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

4.
Intimate interactions between the two major systems of cell-to-cell communication, the neuroendocrine and immune systems, play a pivotal role in homeostasis and developmental biology. During phylogeny as well as during ontogeny, the molecular foundations of the neuroendocrine system emerge before the generation of diversity within the system of immune defenses. Before reacting against non-self infectious agents, the immune system has to be educated in order to tolerate the host molecular structure (self). The induction of self-tolerance is a multistep process that begins in the thymus during fetal ontogeny (central tolerance) and also involves anergizing mechanisms outside the thymus (peripheral tolerance). The thymus is the primary lymphoid organ implicated in the development of competent and self-tolerant T-cells. During ontogeny, T-cell progenitors originating from hemopoietic tissues (yolk sac, fetal liver, then bone marrow) enter the thymus and undergo a program of proliferation, T-cell receptor (TCR) gene rearrangement, maturation and selection. Intrathymic T-cell maturation proceeds through discrete stages that can be traced by analysis of their cluster differentiation (CD) surface antigens. It is well established that close interactions between thymocytes (pre-T-cells) and the thymic cellular environment are crucial both for T-cell development and for induction of central self-tolerance. Particular interest has focused on the ability of thymic stromal cells to synthesize polypeptides belonging to various neuroendocrine families. The thymic repertoire of neuroendocrine-related precursors recapitulates at the molecular level the dual role of the thymus in T-cell negative and positive selection. Thymic precursors not only constitute a source of growth factors for cryptocrine signaling between thymic stromal cells and pre-T-cells, but are also processed in a way that leads to the presentation of self-antigens by (or in association with) thymic major histocompatibility complex (MHC) proteins. Thymic neuroendocrine self-antigens usually correspond to peptide sequences highly conserved during the evolution of their corresponding family. The thymic presentation of some neuroendocrine self-antigens does not seem to be restricted by MHC alleles. Through the presentation of neuroendocrine self-antigens by thymic MHC proteins, the T-cell system might be educated to tolerate main hormone families. More and more recent experiments support the concept that a defect in thymic tolerogenic function is implicated as an important factor in the pathophysiology of autoimmunity.  相似文献   

5.
The thymus has been viewed as the main site of tolerance induction to self-antigens that are specifically expressed by thymic cells and abundant blood-borne self-antigens, whereas tolerance to tissue-restricted self-antigens has been ascribed to extrathymic (peripheral) tolerance mechanisms. However, the phenomenon of promiscuous expression of tissue-restricted self-antigens by medullary thymic epithelial cells has led to a reassessment of the role of central T-cell tolerance in preventing organ-specific autoimmunity. Recent evidence indicates that both genetic and epigenetic mechanisms account for this unorthodox mode of gene expression. As we discuss here, these new insights have implications for our understanding of self-tolerance in humans, its breakdown in autoimmune diseases and the significance of this tolerance mode in vertebrate evolution.  相似文献   

6.
Tumours express a range of antigens, including self-antigens. Regulatory T cells are crucial for maintaining T-cell tolerance to self-antigens. Regulatory T cells are thought to dampen T-cell immunity to tumour-associated antigens and to be the main obstacle tempering successful immunotherapy and active vaccination. In this Review, I consider the nature and characteristics of regulatory T cells in the tumour microenvironment and their potential multiple suppressive mechanisms. Strategies for therapeutic targeting of regulatory T cells and the effect of regulatory T cells on current immunotherapeutic and vaccine regimens are discussed.  相似文献   

7.
'Horor autotoxicus', as it was termed by Erhlich, is a rare clinical event despite the genetic potential of every individual to mount immune responses to self-antigens. This can be explained by the fact that the developing immune system learns to recognize self-antigens and to tolerate them. The key to autoimmunity therefore lies in unravelling the mechanisms of self-tolerance. Studies of conventional models of unresponsiveness have failed to provide a definitive answer owing to the difficulty in controlling for the large number of antigen-related variables associated with self-tolerance and in following the fate of individual clones of self-reactive lymphocytes which emerge in very low numbers from the pre-immune repertoire. These problems have now been overcome by creation of transgenic mice tolerant to endogenous antigens and containing high frequencies of autoreactive T or B lymphocytes. According to the results obtained to date, different mechanisms of tolerance induction operate for self-reactive T lymphocytes compared with B lymphocytes. Thus self-tolerance in T lymphocytes appears to depend largely on clonal deletion within the thymus. By contrast, self-reactive B lymphocytes are functionally silenced without undergoing deletion provided that the transgenic B lymphocytes express both IgM and IgD on their surfaces. This dichotomy makes good sense given that the T-lymphocyte repertoire once shaped within the thymus is not subject to further mutation whereas antigen receptors on mature B lymphocytes undergo hypermutation in the periphery.  相似文献   

8.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

9.
The thymus provides a specialized microenvironment in which distinct subsets of thymic epithelial cells (TECs) support T-cell development. Here, we describe the significance of cortical TECs (cTECs) in T-cell development, using a newly established mouse model of cTEC deficiency. The deficiency of mature cTECs caused a massive loss of thymic cellularity and impaired the development of αβT cells and invariant natural killer T cells. Unexpectedly, the differentiation of certain γδT-cell subpopulations—interleukin-17-producing Vγ4 and Vγ6 cells—was strongly dysregulated, resulting in the perturbation of γδT-mediated inflammatory responses in peripheral tissues. These findings show that cTECs contribute to the shaping of the TCR repertoire, not only of “conventional” αβT cells but also of inflammatory “innate” γδT cells.  相似文献   

10.
The role of peripheral T-cell deletion in transplantation tolerance   总被引:6,自引:0,他引:6  
The apoptotic deletion of thymocytes that express self-reactive antigen receptors is the basis of central (thymic) self-tolerance. However, it is clear that some autoreactive T cells escape deletion in the thymus and exist as mature lymphocytes in the periphery. Therefore, peripheral mechanisms of tolerance are also crucial, and failure of these peripheral mechanisms leads to autoimmunity. Clonal deletion, clonal anergy and immunoregulation and/or suppression have been suggested as mechanisms by which 'inappropriate' T-lymphocyte responses may be controlled in the periphery. Peripheral clonal deletion, which involves the apoptotic elimination of lymphocytes, is critical for T-cell homeostasis during normal immune responses, and is recognized as an important process by which self-tolerance is maintained. Transplantation of foreign tissue into an adult host represents a special case of 'inappropriate' T-cell reactivity that is subject to the same central and peripheral tolerance mechanisms that control reactivity against self. In this case, the unusually high frequency of naive T cells able to recognize and respond against non-self-allogeneic major histocompatibility complex (MHC) antigens leads to an exceptionally large pool of pathogenic effector lymphocytes that must be controlled if graft rejection is to be avoided. A great deal of effort has been directed toward understanding the role of clonal anergy and/or active immunoregulation in the induction of peripheral transplantation tolerance but, until recently, relatively little progress had been made towards defining the potential contribution of clonal deletion. Here, we outline recent data that define a clear requirement for deletion in the induction of peripheral transplantation tolerance across MHC barriers, and discuss the potential implications of these results in the context of current treatment modalities used in the clinical transplantation setting.  相似文献   

11.
T cells, as they develop in the thymus come to express antigen receptors. The specificity of these receptors cannot be predicted and must include many with potential anti-self reactivity. Those that encounter self-antigens, in association with self-MHC (major histocompatibility complex), with high affinity are inactivated and do not leave the thymus. Not all self-antigens however are expressed in the thymus and thus many potentially self-reactive T cells enter the periphery. It poses therefore a fundamental immunological question: how peripheral self-tolerance is maintained in health? Dendritic cells (DC) play a central role in the activation of T cells, especially na?ve T cells. Their importance in initiating immune responses against pathogens has been well established. However, DC represent complex populations of cells. Recent advances in our knowledge including molecular understanding of DC/T cell interactions have begun to reveal another important dimension of DC functions in the periphery, being not only initiators but also regulators of the immune system. This review summarises recent findings on the roles of DC in the regulation of immune responses and the maintenance of peripheral tolerance, in an attempt to explain how break down of this may lead to immunopathologies and autoimmunity. The concept of a regulatory DC and its possible role in the generation of T regulatory cells in health and in diseases are also discussed. Based on these, the need for a "continuing education" of the immune system throughout one's life, in which DC are again the "tutors", is postulated.  相似文献   

12.
Regulatory T cells and mechanisms of immune system control   总被引:28,自引:0,他引:28  
The immune system evolved to protect the host against the attack of foreign, potentially pathogenic, microorganisms. It does so by recognizing antigens expressed by those microorganisms and mounting an immune response against all cells expressing them, with the ultimate aim of their elimination. Various mechanisms have been reported to control and regulate the immune system to prevent or minimize reactivity to self-antigens or an overexuberant response to a pathogen, both of which can result in damage to the host. Deletion of autoreactive cells during T- and B-cell development allows the immune system to be tolerant of most self-antigens. Peripheral tolerance to self was suggested several years ago to result from the induction of anergy in peripheral self-reactive lymphocytes. More recently, however, it has become clear that avoidance of damage to the host is also achieved by active suppression mediated by regulatory T (T(reg)) cell populations. We discuss here the varied mechanisms used by T(reg) cells to suppress the immune system.  相似文献   

13.
The thymic medulla is dedicated for purging the T-cell receptor (TCR) repertoire of self-reactive specificities. Medullary thymic epithelial cells (mTECs) play a pivotal role in this process because they express numerous peripheral tissue-restricted self-antigens. Although it is well known that medulla formation depends on the development of single-positive (SP) thymocytes, the mechanisms underlying this requirement are incompletely understood. We demonstrate here that conventional SP CD4+ thymocytes bearing autoreactive TCRs drive a homeostatic process that fine-tunes medullary plasticity in adult mice by governing the expansion and patterning of the medulla. This process exhibits strict dependence on TCR-reactivity with self-antigens expressed by mTECs, as well as engagement of the CD28-CD80/CD86 costimulatory axis. These interactions induce the expression of lymphotoxin α in autoreactive CD4+ thymocytes and RANK in mTECs. Lymphotoxin in turn drives mTEC development in synergy with RANKL and CD40L. Our results show that Ag-dependent interactions between autoreactive CD4+ thymocytes and mTECs fine-tune homeostasis of the medulla by completing the signaling axes implicated in mTEC expansion and medullary organization.  相似文献   

14.
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5.Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10.Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.  相似文献   

15.
范祖森  马宝骊 《生命科学》1999,11(4):160-164
免疫系统如何识别“自己”和“非己”,这是免疫学理论的核心问题。由于在胚胎期自身反应性细胞克隆被排斥,即形成对自身抗原的耐受;但对外源性“非己”成分能产生免疫应答予以清除,此即免疫系统识别“自己”和“非己”的机制。近年来研究证实外周成熟淋巴细胞中存在着自身反应性T细胞,但处于功能失活状态;谓之外周耐受。目前已明确免疫耐受的形成涉及多种机制的参与,包括免疫细胞的相互作用、免疫细胞的分子识别、信号传递、基因表达等不同层次的调节。对免疫耐受机理的研究可为阐明免疫应答及免疫调节的机制提供依据,必将推动免疫学基础理论研究的发展。  相似文献   

16.
Regulatory T (T(R)) cells maintain tolerance to self-antigens and control immune responses to alloantigens after organ transplantation. Here, we show that CD4(+) CD25(+) human T(R) cells suppress virus-specific T-cell responses. Depletion of T(R) cells from peripheral blood mononuclear cells enhances T-cell responses to cytomegalovirus and human immunodeficiency virus antigens. We propose that chronic viral infections lead to induction of suppressive T(R) cells that inhibit the antiviral immune response.  相似文献   

17.
The adaptive immune system of a vertebrate may attack its own body, causing autoimmune diseases. Regulatory T cells suppress the activity of the autoreactive effector T cells, but they also interrupt normal immune reactions against foreign antigens. In this paper, we discuss the optimal number of regulatory T cells that should be produced. We make the assumptions that some self-reactive immature T cells may fail to interact with their target antigens during the limited training period and later become effector T cells causing autoimmunity, and that regulatory T cells exist that recognize self-antigens. When a regulatory T cell is stimulated by its target self-antigen on an antigen-presenting cell (APC), it stays there and suppresses the activation of other naive T cells on the same APC. Analysis of the benefit and the harm of having regulatory T cells suggests that the optimal number of regulatory T cells depends on the number of self-antigens, the severity of the autoimmunity, the abundance of pathogenic foreign antigens, and the spatial distribution of self-antigens in the body. For multiple types of self-antigen, we discuss the optimal number of regulatory T cells when the self-antigens are localized in different parts of the body and when they are co-localized. We also examine the separate regulation of the abundances of regulatory T cells for different self-antigens, comparing it with the situation in which they are constrained to be equal.  相似文献   

18.
Some self-reactive immature T cells escape negative selection in the thymus and may cause autoimmune diseases later. In the periphery, if T cells are stimulated insufficiently by peptide-major histocompatibility complex, they become inactive and their production of cytokines changes, a phenomenon called “T cell anergy”. In this paper, we explore the hypothesis that T cell anergy may function to reduce the risk of autoimmunity. The underlying logic is as follows: Since those self-reactive T cells that receive strong stimuli from self-antigens are eliminated in the thymus, T cells that receive strong stimuli in the periphery are likely to be non-self-reactive. As a consequence, when a T cell receives a weak stimulus, the likelihood that the cell is self-reactive is higher than in the case that it receives a strong stimulus. Therefore, inactivation of the T cell may reduce the danger of autoimmunity. We consider the formalism in which each T cell chooses its response depending on the strength of stimuli in order to reduce the risk of autoimmune diseases while maintaining its ability to attack non-self-antigens effectively. The optimal T cell responses to a weak and a strong stimulus are obtained both when the cells respond in a deterministic manner and when they respond in a probabilistic manner. We conclude that T cell anergy is the optimal response when a T cell meets with antigen-presenting cells many times in its lifetime, and when the product of the autoimmunity risk and the number of self-reactive T cells has an intermediate value.  相似文献   

19.
T cell populations are regulated both by signals specific to the T-cell receptor (TCR) and by signals and resources, such as cytokines and space, that act independently of TCR specificity. Although it has been demonstrated that disruption of either of these pathways has a profound effect on T-cell development, we do not yet have an understanding of the dynamical interactions of these pathways in their joint shaping of the T cell repertoire. Complete DiGeorge Anomaly is a developmental abnormality that results in the failure of the thymus to develop, absence of T cells, and profound immune deficiency. After receiving thymic tissue grafts, patients suffering from DiGeorge anomaly develop T cells derived from their own precursors but matured in the donor tissue. We followed three DiGeorge patients after thymus transplantation to utilize the remarkable opportunity these subjects provide to elucidate human T-cell developmental regulation. Our goal is the determination of the respective roles of TCR-specific vs. TCR-nonspecific regulatory signals in the growth of these emerging T-cell populations. During the course of the study, we measured peripheral blood T-cell concentrations, TCRβ V gene-segment usage and CDR3-length spectratypes over two years or more for each of the subjects. We find, through statistical analysis based on a novel stochastic population-dynamic T-cell model, that the carrying capacity corresponding to TCR-specific resources is approximately 1000-fold larger than that of TCR-nonspecific resources, implying that the size of the peripheral T-cell pool at steady state is determined almost entirely by TCR-nonspecific mechanisms. Nevertheless, the diversity of the TCR repertoire depends crucially on TCR-specific regulation. The estimated strength of this TCR-specific regulation is sufficient to ensure rapid establishment of TCR repertoire diversity in the early phase of T cell population growth, and to maintain TCR repertoire diversity in the face of substantial clonal expansion-induced perturbation from the steady state.  相似文献   

20.
Abrogation of tolerance to a chronic viral infection   总被引:4,自引:0,他引:4  
This study documents failure of peripheral tolerance mechanisms in a chronic viral infection and shows that T cell tolerance to a viral Ag seen as self from fetal life can be broken despite the presence of this Ag in extrathymic tissues. Congenital infection of mice with lymphocytic choriomeningitis virus (LCMV) results in T cell tolerance to the virus. Such mice become carriers for life harboring virus in many tissues including the thymus and exhibit no LCMV-specific CTL responses. Our previous studies have documented the curing of this congenitally acquired chronic infection after adoptive transfer of CD8+ T cells from LCMV-immune mice and the presence of host-derived, LCMV-specific CTL in these "cured" carriers. In this study we have examined the mechanism by which these carriers acquired T cell competence and show that these CTL differentiated from the bone marrow after elimination of viral Ag from the thymus. These results demonstrate that even when a chronic infection has been established in utero, the adult thymus retains the ability to restore immunocompetence to the host and to provide protection against reinfection. Surprisingly, these LCMV specific CTL were acquired at a time when infectious virus and intracellular viral Ag, although cleared from the thymus, were readily detectable in organs such as the kidney, testes, and brain. In fact, active viral replication in peripheral tissues was ongoing when these mice acquired new virus-specific T cells. These results show that clearance of virus form the thymus was sufficient to abrogate tolerance to a congenitally acquired chronic infection and that Ag in peripheral tissues did not tolerize newly developing T cells. These findings suggest that mechanisms that operate on immature cells within the thymus to silence self-reactive T cells are effective in induction of tolerance to viruses, but mechanisms of tolerizing mature T cells are likely to breakdown. This has implications for virus-induced autoimmunity and for treatment of chronic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号