首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Bone microstructure is affected by ontogeny, phylogeny, biomechanics and environments. These aspects of life history of an extinct animal, especially its growth patterns, may be assessed as fossil bone generally maintains its histological integrity. Recent studies on the bone histology of fossil vertebrates from India encompass different types of temnospondyls and dicynodonts from different Permian and Triassic horizons. The examined taxa show that they had distinct bone histology and varied growth patterns. The Early Triassic trematosaurids had an overall fast growth, which contrasts with that of the Middle and Late Triassic temnospondyl taxa examined. The dicynodonts on the other hand, were characterized by an overall fast growth with periodic interruptions, variable growth rates dependent on ontogeny and indeterminate growth strategy. A comparative study encompassing several neotherapsid genera including the dicynodonts shows significant evolutionary trends towards determinate growth strategy and reduced developmental plasticity.  相似文献   

2.
Abstract: Patterns of bone deposition are reported and deduced from mid‐shaft sections of 21 limb bones of the dicynodont Placerias hesternus from the Placerias Quarry (Upper Triassic), Arizona, USA. All sampled elements of P. hesternus have a large medullary cavity completely filled with bony trabeculae surrounded by dense cortical bone. Dense Haversian bone extends from the perimedullary region to at least the mid‐cortex in all sampled bones. Primary bone in the outer cortex of limb elements of P. hesternus is generally zonal fibrolamellar with a peripheral layer of parallel‐fibred bone. These data suggest periodic rapid osteogenesis followed by slower growth. Among dicynodonts, this strategy is most similar to growth previously reported in other Triassic (Lystrosaurus, Wadiasaurus) and some Permian taxa (Oudenodon, Tropidostoma). An external fundamental system (EFS), suggesting complete or near complete cessation of appositional growth, is present in the largest tibia. This is the first report of EFS in dicynodonts and may represent the attainment of maximum size in P. hesternus. Slow‐growing peripheral bone was observed in elements of varying size in our sample and may support a differential growth pattern between P. hesternus individuals from this locality. A complete growth series of P. hesternus, analysis of Placerias specimens from other localities, and further sampling of other Upper Triassic dicynodonts are needed to better understand a more complete picture of the growth and remodelling patterns that we have initially investigated.  相似文献   

3.
Dicynodonts were the most diverse and abundant herbivorous therapsids of the Permo‐Triassic. They include Lystrosaurus, one of the few taxa known to survive the end‐Permian extinction and the most abundant tetrapod during the Early Triassic postextinction recovery. Explanations for the success of Lystrosaurus and other dicynodonts remain controversial. This study presents an assessment of dicynodont growth patterns using bone histology, with special focus on taxa associated with the end‐Permian extinction event. Bone histological analysis reveals a high cortical thickness throughout the clade, perhaps reflecting a phylogenetic constraint. Growth rings are absent early in ontogeny, and combined with high vascular density, indicate rapid, sustained growth up to the subadult stage. Extraordinarily enlarged vascular channels are present in the midcortex of many dicynodonts, including adults, and may have facilitated a more efficient assimilation of nutrients and rapid bone growth compared to other therapsids. Both increased channel density and enlarged vascular channels evolved at or near the base of major radiations of dicynodonts, implying that the changes in growth and life history they represent may have been key to the success of dicynodonts. Furthermore, this exceptionally rapid growth to adulthood may have contributed to the survival of Lystrosaurus during the end‐Permian extinction and its dominance during the postextinction recovery period. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 341–365.  相似文献   

4.
Nied?wiedzki, G., Gorzelak, P. & Sulej, T. 2010: Bite traces on dicynodont bones and the early evolution of large terrestrial predators. Lethaia, Vol. 44, pp. 87–92. Dicynodont (Synapsida: Anomodontia) bones from the Late Triassic (late Norian/early Rhaetian) of Poland yield characteristic tooth marks that can be attributed to three ichnotaxa (Linichnus serratus, Knethichnus parallelum and Nihilichnus nihilicus). The general shape and dimension of these traces perfectly match the dental morphology of a co‐occurring carnivorous dinosaur. It is therefore concluded that early carnivorous dinosaurs were feeding on dicynodonts. This discovery constitutes one of the oldest evidence of dinosaur predator–prey interaction. It is suggested that an evolutionary increase in the size of dicynodonts across the Late Triassic may have been driven by selection pressure to reach a size refuge from early dinosaur predators. □Bite traces, dicynodonts, dinosaurs, predation, Triassic.  相似文献   

5.
6.
Bone microanatomy of multiple postcranial skeletal elements of several individuals of Hyperodapedon collected from India is reported. This reveals that fibrolamellar bone tissue is predominant in the mid‐ and inner cortices, whereas the peripheral region of the cortex is composed of either parallel‐fibred and/or lamellar bone. The pattern of primary osteons mostly ranges between laminar and subplexiform. Such predominance of fibrolamellar bone tissue in the cortex suggests an overall fast growth, which slowed down considerably later in ontogeny. Four distinct ontogenetic stages are identified based on the bone microstructure. During the juvenile stage, growth was fast and continuous, but it became punctuated during the early and late sub‐adult stages. In adult individuals, growth was slow and showed periodic interruption but did not stop completely, suggesting that Hyperodapedon had an indeterminate growth strategy. Interelemental histovariations affecting cortical thickness, organization of the vascular network, incidence of growth rings and extent of secondary reconstruction are noted. Throughout ontogeny, the femora show higher cortical thickness than humeri and tibiae, suggesting differential appositional growth rate between the skeletal elements. Differences in cortical thickness are noted in the ribs, which suggest differential functional constraints based on anatomical site‐specific occurrences. Although fibrolamellar bone tissue became progressively more dominant towards the archosaurs, there are considerable variations in the growth patterns of the archosauromorphs. This is exemplified by the bone microstructure of Hyperodapedon, which deviates from the generalized slow‐growth pattern proposed for all basal archosauromorphs, suggesting that rapid growth was already present in the archosauromorphs. The cortical thickness of various long bones of Hyperodapedon bears similarity with that of several extant terrestrial quadrupeds, suggesting that Hyperodapedon was essentially a terrestrial quadruped.  相似文献   

7.
Current phylogenetic hypotheses for the dicynodonts conflict, probably because the characters used, especially those of the jaws and facial region, show considerable convergence. Characters of the braincase and basipterygoid articulation of the Late Permian–Middle Triassic dicynodonts Diictodon , Dicynodon , Kingoria, Lystrosaurus , Rechnisaurus , and 14 other genera, may have phylogenetic value. Parsimony analysis and the character compatability permutation test suggest, at the highest possible confidence level, that the data set contains significant hierarchical structure, interpreted as a result of phylogeny. The most parsimonious tree broadly agrees with all recent hypotheses on the relationships among dicynodonts. However, it conflicts with the recent suggestion that Lystrosaurus is part of a clade of Middle–Late Triassic dicynodonts, but supports the basal position of Kingoria . The use of Eodicynodon as an outgroup does not perturb the parsimonious relationship of the included taxa. Topological constraints reveal that phylogenetic hypotheses based only on basicranial characters are not robust. Characters of the basipterygoid articulation and inner braincase have high consistency and retention indices, which suggests that the main evolutionary transformations in the dicynodont basicranium occurred within these structures.  相似文献   

8.
Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.  相似文献   

9.
Abstract:  Examination of the bone microstructure of Lystrosaurus murrayi from India and South Africa reveals a predominance of fibrolamellar bone tissue, which suggests rapid periosteal osteogenesis and an overall fast growth. Four distinct ontogenetic stages have been identified based on tissue type, organization of the primary osteons, incidence of growth rings, secondary reconstruction and endosteal bone deposition. An indeterminate growth strategy is proposed for Lystrosaurus . Inter-elemental histovariability suggests differential growth rate of the skeletal elements within the same individual, and among different individuals. The high cortical thickness of the dorsal ribs, an extensive secondary reconstruction in the cortical region of different skeletal elements that resulted in erosionally enlarged channels from the perimedullary to the midcortical region, and trabecular infilling of the medullary region even in the diaphyseal sections of the limb bones suggest at least a semi-aquatic lifestyle for L. murrayi .  相似文献   

10.
Two sites in the Villány Hills, Hungary, have yielded rich fish assemblages from Middle to Late Triassic shallow marine deposits. The collected material comes from the Ladinian Templomhegy Dolomite Member and from the Carnian Mészhegy Sandstone Formation. The ichthyofauna is composed of both chondrichthyans (Hybodontidae indet., Palaeobates angustissimus, ‘Polyacrodus’ sp., ?Lissodus sp.) and osteichthyans (Gyrolepis sp., Birgeria sp., and further indeterminate actinopterygians). Despite the large sample size, no remains of neoselachians have been found. The Ladinian Templomhegy Dolomite is dominated by durophagous hybodontiforms (Palaeobates angustissimus, ?Lissodus sp.), but the piscivorous hybodontid and the generalist ‘Polyacrodus’ sp. are missing, while in the fish fauna collected from the Carnian Mészhegy Formation indeterminate piscivorous hybodontids are the most common elements and durophagous forms are much less abundant. The dominance of piscivorous hybodontids in the Carnian Mészhegy Sandstone could be related to the global decrease of diversity of marine fish-eating reptiles (e.g., nothosaurs) or to a change of paleoenvironmental conditions. The present study improves our knowledge on the poorly known Triassic vertebrate faunas of the Tisza Mega-unit, which formed a segment of the passive Neotethys margin of the European Plate and shows an important example of a potential vertebrate faunal shift during the Middle to Late Triassic.  相似文献   

11.
Here, we describe the bone histology of juvenile specimens of the basal sauropodomorph Mussaurus patagonicus and interpret its significance in terms of the early growth dynamics of this taxon. Thin sections from three juvenile specimens (femur length, 111–120 mm) of Mussaurus were analysed. The sampled bones consist of multiple postcranial elements collected from the Late Triassic Laguna Colorada Formation (El Tranquilo Group, Patagonia). The cortical bone is composed of fibrolamellar bone tissue. Vascularisation is commonly laminar or plexiform in the long bones. Growth marks are absent in all the examined samples. The ‘epiphyses’ of long bones are all formed by well-developed hypertrophied calcified cartilage. The predominance of woven-fibred bone matrix in cortical bones indicates a fast growth rate in the individuals examined. Moreover, given the existence of growth marks in adult specimens of Mussaurus, as in other sauropodomorphs, and assuming that the first lines of arrested growth was formed during the first year of life, the absence of growth marks in all the bones suggest that the specimens died before reaching their first year of life. Compared with the African taxon Massospondylus carinatus (another basal sauropodomorph for which the bone histology has been previously studied), it appears that Mussaurus had a higher early growth rate than Massospondylus.  相似文献   

12.
《Palaeoworld》2014,23(3-4):263-275
A fundamental aspect of taxonomy at the generic level, critical to understand Early Triassic conodont evolution, is the composition of the multielement apparatus. In this paper, we document a platform-bearing new conodont genus, Parafurnishius n. gen., as well as its multielement apparatus from the Griesbachian Feixianguan Formation (Lower Triassic) in Xuanhan County, northeastern Sichuan Province, southwest China. The new conodont genus is characterized by numerous robust and irregularly distributed conical denticles with variable platform morphology that has a possible affinity with the P1 elements of Furnishius. These genera have apparatuses similar to those of Ellisonia and are classified with the family Ellisoniidae. The strong intraspecific variation of P1 elements and the growth series within the entire sample population suggest that Parafurnishius may have evolved from the Griesbachian Isarcicella by developing random denticle positioning away from the platform centre, and then possibly evolved into younger Triassic Furnishius by developing a stable blade configuration. This preferred interpretation implies an ellisonid apparatus for Isarcicella. Alternatively, Parafurnishius may have evolved from Ellisonia and developed a homeomorphic P1 element with Isarcicella. This new taxon has strong intraspecific variation of denticle growth orientation during the Early Triassic.  相似文献   

13.
《Comptes Rendus Palevol》2018,17(6):357-365
The middle Eocene Pondaung Formation in Myanmar has yielded a rich mammalian fauna including several Primate taxa. Hyaenodonta are known by the genera Kyawdawia, Yarshea, Orienspterodon, and two other indeterminate taxa. We describe here new material of Kyawdawia, including some morphological details, a new species of the hypercarnivorous genus Propterodon and an indeterminate species, different from those described earlier in Myanmar, and characterized by a reduction of m3 and would belong to a third lineage with the same evolutionary trend as Galecyon and the Limnocyoninae. The hyainailourines (Orienspterodon) and hyaenodontines (Propterodon) are recorded for the first time in Southeast Asia and these subfamilies appeared in quasi the same time in Europe illustrating probably a profound change in the carnivorous fauna among Laurasia.  相似文献   

14.
Procolophonoidea represent the most successful radiation of Parareptilia that lived during the Permo-Triassic. They are one of the few vertebrate groups that survived the end-Permian extinction and are thus important for studying the recovery of the post-extinction terrestrial ecosystem. Here, we investigate the palaeobiology of three Triassic procolophonid parareptiles, namely Sauropareion anoplus, Procolophon trigoniceps and Teratophon spinigenis, from the Karoo Basin of South Africa, inferred from histological analyses of their limb bones. Results reveal that all three taxa exhibit parallel-fibered bone tissue. Growth rings are absent in the Early Triassic Sauropareion and Procolophon whereas annuli are present in the Middle Triassic Teratophon, even during early ontogeny, suggesting a difference in life histories. Morphology and bone histology imply fossorial lifestyles for all three taxa, suggesting that burrowing may have played an important role in their survival during the harsh post-extinction Triassic environment.  相似文献   

15.
《Palaeoworld》2014,23(2):143-154
Based on newly collected materials from the Lower Triassic Feixianguan Formation of Xiongwu section in Xingyi, Guizhou and the Ximatang Formation of Ximatang section in Qiubei, Yunnan, southern China, nine species belonging to seven genera are described. Two bivalve assemblages are recognized and regionally correlated in South China. The bivalve assemblage from the Feixianguan Formation of Xiongwu exhibits a higher diversity including seven species belonging to seven genera: Claraia griesbachi, Leptochondria virgalensis, Entolium (Entolium) microtis, Towapteria scythicum, Bakevillia exporrecta, Bositra sp., and Unionites? fassaensis. In contrast, the bivalve assemblage from the Ximatang Formation of Ximatang has a much lower diversity, consisting of only two species, i.e., Claraia griesbachi and Claraia radialis. Additionally, C. griesbachi and C. radialis, as the most common species of Claraia in the Early Triassic, are revised.  相似文献   

16.
A new species of the erythrosuchid archosauriform reptile Garjainia Ochev, 1958 is described on the basis of disarticulated but abundant and well-preserved cranial and postcranial material from the late Early Triassic (late Olenekian) Subzone A of the Cynognathus Assemblage Zone of the Burgersdorp Formation (Beaufort Group) of the Karoo Basin of South Africa. The new species, G. madiba, differs from its unique congener, G. prima from the late Olenekian of European Russia, most notably in having large bony bosses on the lateral surfaces of the jugals and postorbitals. The new species also has more teeth and a proportionately longer postacetabular process of the ilium than G. prima. Analysis of G. madiba bone histology reveals thick compact cortices comprised of highly vascularized, rapidly forming fibro-lamellar bone tissue, similar to Erythrosuchus africanus from Subzone B of the Cynognathus Assemblage Zone. The most notable differences between the two taxa are the predominance of a radiating vascular network and presence of annuli in the limb bones of G. madiba. These features indicate rapid growth rates, consistent with data for many other Triassic archosauriforms, but also a high degree of developmental plasticity as growth remained flexible. The diagnoses of Garjainia and of Erythrosuchidae are addressed and revised. Garjainia madiba is the geologically oldest erythrosuchid known from the Southern Hemisphere, and demonstrates that erythrosuchids achieved a cosmopolitan biogeographical distribution by the end of the Early Triassic, within five million years of the end-Permian mass extinction event. It provides new insights into the diversity of the Subzone A vertebrate assemblage, which partially fills a major gap between classic ‘faunal’ assemblages from the older Lystrosaurus Assemblage Zone (earliest Triassic) and the younger Subzone B of the Cynognathus Assemblage Zone (early Middle Triassic).  相似文献   

17.
18.
Prondvai E  Stein K  Osi A  Sander MP 《PloS one》2012,7(2):e31392

Background

Rhamphorhynchus from the Solnhofen Limestones is the most prevalent long tailed pterosaur with a debated life history. Whereas morphological studies suggested a slow crocodile-like growth strategy and superprecocial volant hatchlings, the only histological study hitherto conducted on Rhamphorhynchus concluded a relatively high growth rate for the genus. These controversial conclusions can be tested by a bone histological survey of an ontogenetic series of Rhamphorhynchus.

Methodology/Principal Findings

Our results suggest that Bennett''s second size category does not reflect real ontogenetic stage. Significant body size differences of histologically as well as morphologically adult specimens suggest developmental plasticity. Contrasting the ‘superprecocial hatchling’ hypothesis, the dominance of fibrolamellar bone in early juveniles implies that hatchlings sustained high growth rate, however only up to the attainment of 30–50% and 7–20% of adult wingspan and body mass, respectively. The early fast growth phase was followed by a prolonged, slow-growth phase indicated by parallel-fibred bone deposition and lines of arrested growth in the cortex, a transition which has also been observed in Pterodaustro. An external fundamental system is absent in all investigated specimens, but due to the restricted sample size, neither determinate nor indeterminate growth could be confirmed in Rhamphorhynchus.

Conclusions/Significance

The initial rapid growth phase early in Rhamphorhynchus ontogeny supports the non-volant nature of its hatchlings, and refutes the widely accepted ‘superprecocial hatchling’ hypothesis. We suggest the onset of powered flight, and not of reproduction as the cause of the transition from the fast growth phase to a prolonged slower growth phase. Rapidly growing early juveniles may have been attended by their parents, or could have been independent precocial, but non-volant arboreal creatures until attaining a certain somatic maturity to get airborne. This study adds to the understanding on the diversity of pterosaurian growth strategies.  相似文献   

19.
《Palaeoworld》2021,30(3):461-494
The paper describes new Lower Jurassic corals from the South-Eastern Pamir Mountains (Tajikistan) and interprets their relationships with contemporaneous West Tethyan corals. Taxonomic similarities with Pliensbachian European and North African faunas indicate a Pliensbachian age for this fauna, which was previously considered to be of Hettangian/Sinemurian age. Together with the taxa earlier described from the Pamirs, this fauna consists of 30 species of 25 genera, including Triassic holdover genera such as Stylophyllopsis, Phacelostylophyllum and Eocomoseris. The bulk of the fauna represents new Jurassic genera: Alichurastrea, Eomicrophyllia, Guembelastreomorpha, Gurumdynia, Pinacomorpha, Protostephanastrea, Psenophyllia, Sedekastrea and Stylimorpha. Earlier coral studies of the region concerned the genera: Archaeosmilia Melnikova, 1975, Archaeosmiliopsis Melnikova, 1975, Cylismilia Roniewicz, 1988, Pachysmilia Melnikova, 1989, and Prodonacosmilia Melnikova in Melnikova and Roniewicz, 1976. Two species that were considered to belong to the genus Cylismilia, are redescribed and reclassified in the genera Psenophyllia, and Archaeosmilia Melnikova, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号