首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The herbaceous ground cover of the longleaf pine ecosystem harbors the highest plant species richness in North America, with up to 50 species per square meter, but the mechanisms that regulate this diversity are not well understood. In this system, variability in seedling recruitment events may best explain the extremely high small-scale species richness and its relationship to soil moisture and system net primary productivity. To understand the potential mechanistic controls on species richness, we used a long-term resource manipulation study across a natural soil moisture gradient to assess environmental controls on seedling recruitment. We considered the availability of resources to be an indicator of seedling safe-site supply, and also manipulated seed availability to examine the relative importance of recruitment limitations on seedling diversity. We found that water availability regulated the number of species in the seedling community regardless of the underlying natural moisture gradient, and that this effect may result from differential responses of seedling guilds to resource availability. Water supply was more important than seed supply in determining seedling establishment, suggesting that appropriate sites for regeneration are a factor limiting seedling success. This is the first study that shows that the episodic supply of microsites for recruitment could influence species richness in the highly threatened and biodiverse longleaf pine savanna.  相似文献   

2.
We examined patterns of shrub species diversity relative to landscape‐scale variability in environmental factors within two watersheds on the coastal flank of the Santa Ynez Mountains, California. Shrub species richness and dominance was sampled at a hierarchy of spatial units using a high‐powered telescope from remote vantage points. Explanatory variables included field estimates of total canopy cover and percentage rock cover, and modeled distributions of slope, elevation, photosynthetically active radiation, topographic moisture index, and local topographic variability. Correlation, multiple regression, and regression tree analyses showed consistent relationships between field‐based measurements of species richness and dominance, and topographically‐mediated environmental variables. In general, higher richness and lower dominance occurred where environmental conditions indicated greater levels of resource limitation with respect to soil moisture and substrate availability. Maximum richness in shrub species occurred on high elevation sites with low topographic moisture index, rocky substrate, and steep slopes. Maximum dominance occurred at low elevation sites with low topographic variability, high potential solar insolation, and high total shrub canopy cover. The observed patterns are evaluated with respect to studies on species‐environment relations, resource use, and regeneration of shrubs in chaparral and coastal sage scrub. The results are discussed in the context of existing species‐diversity hypotheses that hinge on reduced competitive dominance and increased resource heterogeneity under conditions of resource limitation.  相似文献   

3.
Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention.  相似文献   

4.
Anu Eskelinen  Risto Virtanen 《Oikos》2005,110(2):360-368
It is becoming widely accepted that plant community structure is determined not only by local scale factors, but that regional factors may play considerable role. The research studying the associated processes in different environments with different species assemblages is still limited. We conducted a two-year seed sowing experiment to test whether a plant community in a low-productive mountain snowbed is limited by seed or microsite availability and how these variables depend on natural grazing. In a factorial design, half of the plots received a mixture of seeds of fourteen species naturally occurring at the study site and above ground biomass was removed from half of the plots. These treatments were applied to plots with long term grazer exclosures and to plots accessible to grazers. Both sowing and biomass removal increased the number of seedlings, the species richness of seedlings and total species richness. The number of seedlings was higher in open plots than in exclosures in the second year. Both seedling richness and total species richness were higher in open plots. Seedling recruitment was negatively related to the amount of above ground biomass and positively to the initial species richness. These results suggest that even fairly low-productive environments can be both seed and microsite limited and that these depend on grazing pressure. Natural grazing by mammal herbivores (e.g. lemmings and reindeer) favours species colonization and seedling emergence. Low-productive mountain snowbeds are prone to colonization from the local species pool and even high species richness may not constrain ingression of new species.  相似文献   

5.
In this study, we examined the effects of water depth and temperature on seedling recruitment from a prairie wetland seed bank. We collected seed-bank samples from natural and restored prairie pothole wetlands in northwestern Iowa and combined them into a single sample. We examined seedling recruitment from this seed-bank sample in an experimental study using a factorial design of 4 temperature treatments (5° night and 15° day to 20° night and 30° day) and 3 water-depth treatments (0, 2, and 7 cm).Principal Components Analysis showed that both water depth and temperature had significant effects on the composition of the seedling community as measured by changes in relative stem density and biomass. Water depth had its strongest effects on stem density while temperature had its strongest effects on biomass.For the 22 most common species, stem density varied with water depth for 95% of the species and with temperature for 50% of the species. Most species with water depth responses had lower stem counts as water depth increased, and for the majority of species with temperature responses stem density increased with temperature.Total, annual, and perennial species richness was negatively correlated with water depth. Total and annual species richness was positively correlated to temperature, while perennial species richness was unresponsive to temperature. In addition, species found at low elevations as adults emerged at higher rates in the deep water treatments while species that occurred at higher elevations as adults had their highest emergence rates in the low water treatments.Our results suggest that differences in environmental conditions along coenoclines can affect the initial distribution of species emerging from the soil seed bank. Water depth sorted seedlings according to their adult water-depth tolerances, and temperature determined the proportion of annuals in the seedling community.  相似文献   

6.
Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e., unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity-variability relations.  相似文献   

7.
In the last decades, several studies have reported the increase of land degradation and desertification in the Mediterranean Basin. Depending on degradation severity, ecological restoration might be needed in order to promote ecosystem recovery. The ecology of the selected species and intra specific variability should be considered in order to improve restoration options, especially facing climate change.The present study tested the hypothesis that seedlings from drier provenances would be better adapted to low water content conditions. Seeds were germinated under controlled temperature after which seedlings were grown in a phytotron under two contrasting watering regimes. Seedling performance was analysed using morphological and physiological parameters.Low water content had a clear negative effect on the seedlings’ aboveground biomass (total dry weight, root collar diameter, leaf dry weight and leaf weight ratio) and a positive effect on belowground biomass (root weight and root:shoot ratio). This response was not unequivocal, since provenances differed in morphological adaptations to low water content. Seedlings from the wettest provenance revealed a higher relative growth rate under high water content but a poor adaptation to limited water availability when compared to the other two provenances. This was observed by the absence of a significant belowground investment in this provenance. Seedlings from the wettest provenance also presented a significant reduction of total leaf area that was not observed in the other two provenances. This can however be hardly considered as a successful adaptation to cope with drought since this provenance produced less sclerophyllous leaves, less belowground biomass and also lower sapwood to leaf area ratio independently from the water content conditions. By contrast, seedlings from the dry provenance with the hottest summer had similar root collar diameter, leaf dry weight and physiological performance under both watering regimes.The observed adaptations to water regimes seem to be related with the climate of the seed source and highlighted the importance of seed provenance in ecological restoration actions using Mediterranean species. This knowledge could improve early establishment success predictions for different plant populations, allowing more reliable and cost-effective management decisions under climate change scenarios.  相似文献   

8.
The relationship between biodiversity and ecosystem functioning has become a prominent topic in the ecological literature. However, the contemporary approach that species diversity controls primary productivity contrasts with the historical perspective that species diversity responds to productivity. Moreover, previous experimental results have not been consistent with the patterns observed in nature. To resolve these questions, the multivariate productivity–diversity (MPD) hypothesis proposes a bidirectional relationship between diversity and productivity. It predicts that the resource supply, expressed in terms of resource availability and imbalance, establishes the number of species that can locally coexist. Simultaneously, the resource supply also indirectly affects biomass production, determining the form and cause of the effects of species richness on resource use and biomass. To test the MPD hypothesis, we conducted three field experiments with a subtidal marine macroalgal community using a seasonal upwelling process as a driver of distinct levels of nutrient supply. Seasonally, macroalgal species richness and biomass were assessed and experimental manipulations conducted to investigate the relative importance of species richness and identity effects on biomass production and the mechanisms underlying these. Changes in macroalgal biomass and species richness were observed in response to the nutrient supply. Stronger effects of species identity were detected for all periods investigated, although species richness effects also occurred to some extent. The magnitudes of the net biodiversity and of the complementarity effects were a unimodal function of nutrient supply, whereas a concave‐up curve was observed for selection effects. The nutrient supply directly affected the number of species that dominated the local community and, consequently, determined the efficiency with which resources were exploited and converted to biomass. Our results provide evidence consistent with the MPD hypothesis and aids in explaining the discrepancies between experimental results and natural patterns through the merging of two contrasting perspectives in ecology.  相似文献   

9.
Plant feedbacks increase the temporal heterogeneity of soil moisture   总被引:3,自引:0,他引:3  
Plant feedbacks on resource levels are well-known, but feedbacks on resource variability have received little attention. Semi-arid grasslands have greater temporal heterogeneity of rainfall than mesic forests, leading to the possibility that grasses further enhance this variability as a mechanism for excluding woody plants originating in habitats with less heterogeneity. Here we test the hypothesis that grasses create greater levels of temporal heterogeneity of soil resources than do woody plants. We used monocultures of five replicate species of both growth forms. Daily soil moisture measurements taken 10 and 30 cm beneath monocultures over a growing season showed that temporal heterogeneity was significantly greater under grasses than under woody plants. This occurred during a dry period when plants are most likely to compete for moisture. Differences in temporal heterogeneity between growth forms were related to differences in their abilities to reduce soil moisture: during the dry period, the net effect of vegetation on moisture 10 cm deep was greatest under grasses. Although the rate of change of soil moisture was higher under grasses, the growth forms exploited different depths of soil moisture: soils 10 cm deep were driest under grasses, but soils 30 cm deep were driest under woody species. In summary, grasses increased within-season resource variability in a habitat already characterized by high among-year variability.  相似文献   

10.
We investigated the effects of temporal variability in a disturbance regime on fouling communities at two study sites in a northern-central Chilean bay. Fouling assemblages grown on artificial settlement substrata were disturbed by mechanical removal of biomass at different time intervals. Using one single disturbance frequency (10 disturbance events over 5 months) we applied 7 different temporal disturbance treatments: a constant disturbance regime (identical intervals between disturbance events), and 6 variable treatments where both variableness and sequences of intervals between disturbance events were manipulated. Two levels of temporal variableness (low and high, i.e. disturbance events were either dispersed or highly clumped in time) in the disturbance regime were applied by modifying the time intervals between subsequent disturbance events. To investigate the temporal coupling between disturbance events and other ecological processes (e.g. larval supply and recruitment intensity), three different sequences of disturbance intervals were nested in each of the two levels of temporal variableness. Species richness, evenness, total abundance, and structure of communities that experienced the various disturbance regimes were compared at the end of the experiment (15 days after the last disturbance event). Disturbance strongly influenced the community structure and led to a decrease in evenness and total abundance but not species richness. In undisturbed reference communities, the dominant competitor Pyura chilensis (Tunicata) occupied most available space while this species was suppressed in all disturbed treatments. Surprisingly, neither temporal variableness in the disturbance regime nor the sequence of intervals between disturbance events had an effect on community structure. Temporal variability in high disturbance regimes may be of minor importance for fouling communities, because they are dominated by opportunistic species that are adapted to rapidly exploit available space.  相似文献   

11.
Studies examining the relationship between species richness and the productivity of ecological communities have taken one of two opposite viewpoints, viewing either productivity as a primary driver of richness or richness as a driver of productivity. Recently, verbal and graphical hypotheses have been proposed that attempt to merge these perspectives by clarifying the causal pathways that link resource supply, species richness, resource use, and biomass production. Here we present mathematical models that formalize how these pathways can operate simultaneously in a single ecological system. Using a metacommunity framework in which classic consumer-resource competition theory governs species interactions within patches, we show that the mechanisms by which resource supply influences species richness are inherently linked to the mechanisms by which species richness controls resource use and biomass production. Unlike prior hypotheses, our models show that resource supply can affect species richness and that richness can affect productivity simultaneously at a single spatial scale. Our models also reproduce scale-dependent associations between species richness and community biomass that have been reported elsewhere. By detailing the pathways by which resource supply, species richness, biomass production, and resource use are connected, our models move closer to resolving the nature of causality in diversity-productivity relationships.  相似文献   

12.

Background and Aims

Plants respond to the spatial and temporal heterogeneity of a resource supply. However, their responses will depend on intraspecific competition for resource acquisition. Although plants are subject to various intensities of intraspecific competition, most studies of resource heterogeneity have been carried out under a single density so that the effects of intraspecific competition on plant responses to resource heterogeneity are largely unknown.

Methods

A growth experiment was performed to investigate plant responses to the temporal heterogeneity of water supply and nutrient levels under multiple plant densities. The annual plant Perilla frutescens was grown using different combinations of frequency of water supply, nutrient level and density, while providing the same total amount of water under all conditions. The effects of the treatments on biomass, allocation to roots and intensity of competition were analysed after 48 d.

Key Results

Biomass and allocation to roots were larger under homogeneous than under heterogeneous water supply, and the effects of water heterogeneity were greater at high density than at low density. The effects of water heterogeneity were greater at high nutrient level than at low level for biomass, while the effects were greater at low nutrient level than high level for allocation to roots. Competition was severer under homogeneous than under heterogeneous water supply.

Conclusions

Competition for water probably makes plants more sensitive to the water heterogeneity. In addition, the intensity of intraspecific competition can be affected by the temporal patterns of water supply. Because both resource heterogeneity and intraspecific competition affect resource acquisition and growth of plants, their interactive effects should be evaluated more carefully under future studies.  相似文献   

13.
Population and community responses of phytoplankton to fluctuating light   总被引:5,自引:0,他引:5  
Elena Litchman 《Oecologia》1998,117(1-2):247-257
Light is a major resource in aquatic ecosystems and has a complex pattern of spatio-temporal variability, yet the effects of dynamic light regimes on communities of phytoplankton are largely unexplored. I examined whether and how fluctuating light supply affects the structure and dynamics of phytoplankton communities. The effect of light fluctuations was tested at two average irradiances: low, 25 μmol quanta m−2 s−1 and high, 100 μmol quanta m−2 s−1 in 2- and 18-species communities of freshwater phytoplankton. Species diversity, and abundances of individual species and higher taxa, depended significantly on both the absolute level and the degree of variability in light supply, while total density, total biomass, and species richness responded only to light level. In the two-species assemblage, fluctuations increased diversity at both low and high average irradiances and in the multispecies community fluctuations increased diversity at high irradiance but decreased diversity at low average irradiance. Species richness was higher under low average irradiance and was not affected by the presence or absence of fluctuations. Diatom abundance was increased by fluctuations, especially at low average irradiance, where they became the dominant group, while cyanobacteria and green algae dominated low constant light and all high light treatments. Within each taxonomic group, however, there was no uniform pattern in species responses to light fluctuations: both the magnitude and direction of response were species-specific. The temporal regime of light supply had a significant effect on the growth rates of individual species grown in monocultures. Species responses to the regime of light supply in monocultures qualitatively agreed with their abundances in the community experiments. The results indicate that the temporal regime of light supply may influence structure of phytoplankton communities by differentially affecting growth rates and mediating species competition. Received: 24 September 1997 / Accepted: 8 July 1998  相似文献   

14.
Temporal stability of pond zooplankton assemblages   总被引:1,自引:0,他引:1  
1. A large body of recent theory has recently developed focused on the relationship between the species diversity of competitor assemblages and the temporal stability of total competitor biomass. Many of these models predict that stability can increase with increasing diversity. 2. To explore natural relationships between zooplankton taxonomic diversity and temporal stability of total zooplankton biomass, 18 fishless, permanent ponds located in southern Michigan were surveyed over a 5 month period during a single growing season. 3. Results showed that temporal variability in total zooplankton biomass (measured as the coefficient of variation or CV) decreased with increasing mean zooplankton taxonomic richness. Thus, temporal stability increased with increasing taxonomic richness, consistent with theoretical predictions. 4. Decreases in the CV appeared to be because of portfolio effects (statistical averaging of species’ biomass fluctuations) rather than negative covariances among zooplankton taxa. 5. The CV of zooplankton biomass was also related to several environmental variables, suggesting that taxonomic richness may not be the only mediator of biomass stability. The CV decreased with increasing relative abundance of grazer‐resistant algae (algae >35 μm in size) and the CV increased with increasing pond productivity.  相似文献   

15.
Question: What is the influence of refuse dumps of leaf‐cutting ants on seedling recruitment under contrasting moisture conditions in a semi‐arid steppe? Location: Northwestern Patagonia, Argentina. Methods: In a greenhouse experiment, we monitored seedling recruitment in soil samples from refuse dumps of nests of the leaf‐cutting ant Acromyrmex lobicornis and non‐nest sites, under contrasting moisture conditions simulating wet and dry growing seasons. Results: The mean number of seedling species and individuals were higher in wet than in dry plots, and higher in refuse dump plots than in non‐nest soil plots. The positive effect of refuse dumps on seedling recruitment was greater under low moisture conditions. Both the accumulation of discarded seeds by leaf‐cutting ants and the passive trapping of blowing‐seeds seems not explain the increased number of seeds in refuse dumps. Conversely, refuse dumps have higher water retention capacity and nutrient content than adjacent non‐nest soils, allowing the recruitment of a greater number of species and individual seedlings. Conclusions: Nests of A. lobicornis may play an important role in plant recruitment in the study area, allowing a greater number of seedlings and species to be present, hence resulting in a more diverse community. Moreover, leaf‐cutting ant nests may function as nurse elements, generating safe sites that enhance the performance of neighbouring seedlings mainly during the driest, stressful periods.  相似文献   

16.
Rainfall and soil moisture variability have a strong effect on plant survival and seed germination in arid environments, yet very little is known about the effects on roots and growth of woody seedlings. Here we focused on the effects of variability in both amount and frequency of water supply on juvenile root and leaf functional traits and growth of seven Mediterranean shrub species occurring in arid SE Spain, Anthyllis cytisoides, Atriplex halimus, Ephedra fragilis, Genista umbellata, Lycium intricatum, Retama sphaerocarpa, and Salsola oppositifolia. In a 14-month greenhouse experiment we manipulated water supply expecting that reduced water amount and pulses of watering of different magnitude affected functional traits and seedling growth, even if the amount of water provided was the same. Different watering patterns altered soil drying dynamics, with reduced supply of water amount and frequent watering becoming the driest treatment. We found that roots of all species responded to alterations in water supply by changing biomass allocation patterns (i.e., higher root-to-shoot mass [R:S] ratio in droughted plants), and by altering fine roots diameter, measured in terms of specific root length. Indeed, differences in growth rate among species were significantly linked to fine roots diameter and biomass allocation, which relates to uptake capacity of roots. However, relative growth rate and leaf traits such as specific leaf area were insensitive, likely because prolonged droughts over longer periods of time seem necessary to constraint growth in all these arid shrubs.  相似文献   

17.
We studied the temporal variability and resistance to perturbation of the biomass production of grassland communities from an experimental diversity gradient (the Portuguese BIODEPTH project site). With increasing species richness relative temporal variability (CV) of plant populations increased but that of communities decreased, supporting the insurance hypothesis and related theory. Species‐rich communities were more productive than species‐poor communities in all three years although a natural climatic perturbation in the third year (frequent frost and low precipitation) caused an overall decrease in biomass production. Resistance to this perturbation was constant across the experimental species richness gradient in relative terms, supporting a similar response from the Swiss BIODEPTH experiment. The positive biomass response was generated by different combinations of the complementarity and selection effects in different years. Complementarity effects were positive across mixtures on average in all three years and positively related to diversity in one season. The complementarity effect declined following perturbation in line with total biomass but, counter to predictions, in relative terms overyielding was maintained in all years. Selection effects were positively related to diversity in one year and negative overall in the other two years. The response to perturbation varied among species and for the same species growing in monoculture and mixture, but following the frost communities were more strongly dominated by species with lower monoculture biomass and the selection effect was more negative. In total, our results support previous findings of a positive relationship between diversity and productivity and between diversity and the temporal stability of production, but of no effect of diversity on the resistance to perturbation. We demonstrate for the first time that the relative strength of overyielding remained constant during an exceptional natural environmental perturbation.  相似文献   

18.
Biodiversity may regulate the temporal variability of ecological systems   总被引:1,自引:0,他引:1  
The effect of biodiversity on natural communities has recently emerged as a topic of considerable ecological interest. We review studies that explicitly test whether the number of species in a community (species richness) regulates the temporal variability of aggregate community (total biomass, productivity, nutrient cycling) and population (density, biomass) properties. Theoretical studies predict that community variability should decline with increasing species richness, while population variability should increase. Many, but not all, empirical studies support these expectations. However, a closer look reveals that several empirical studies have either imperfect experimental designs or biased methods of calculating variability. Furthermore, most theoretical studies rely on highly unrealistic assumptions. We conclude that evidence to support the claim that biodiversity regulates temporal variability is accumulating, but not unequivocal. More research, in a broader array of ecosystem types and with careful attention to methodological considerations, is needed before we can make definitive statements regarding richness‐variability relationships.  相似文献   

19.
Although some consensus exists regarding the positive synergism between energy and heterogeneity in increasing species diversity, the role of environmental variability remains controversial. We examine how these factors interact to explain spatial variation in mammal species richness in South America. After taking into account the effects of spatial autocorrelation and area, elevation variability and energy mainly drive spatial variation in mammal species richness. The effect of environmental variability is less important. When different taxonomic groups of mammals are analyzed separately, three ways emerge whereby energy and heterogeneity interact to promote species richness. Heterogeneity may have no effect on species richness, habitat heterogeneity and energy availability contribute independently to species richness, or heterogeneity increases in importance with an increase in energy availability. The partition of species into range size quartiles shows that habitat heterogeneity and temporal instability in the resource supply account for the species richness pattern in the narrowest- ranging species. Habitat heterogeneity is significant also for intermediate ranging species but not for the widest-ranging species. Energy alone drives the species richness pattern in the latter species. The interplay between ecology and biogeographic history may ultimately explain these differences given that narrow- and wide-ranging species show distinct biogeographic patterns, and different taxonomic groups also unequally represent them.  相似文献   

20.
Mediterranean-type ecosystems are increasingly prone to drought stress. Herbivory might limit plant functional responses to water shortage. This may occur as a result of plant resource depletion or due to the fact that leaf damage and drought may elicit opposite phenotypic responses. We evaluated the impact of herbivory on plant fitness in the field, and the effects of leaf damage on phenotypic plasticity to reduced soil moisture in a greenhouse. The study species was Convolvulus demissus, a perennial herb endemic to central Chile, which has a Mediterranean-type climate. Controlled herbivory by chrysomelid beetles (natural herbivores) in the field had a negative impact on plant fitness, estimated as number of fruits. Whereas reduced soil moisture alone did not affect seedling survival, damaged seedlings (simulated herbivory) had greater mortality when growing under water shortage. The hypothesis that herbivory would constrain phenotypic plasticity was supported by significant statistical interactions between leaf damage and soil moisture, followed by inspections of reaction norms. This was verified both overall (all phenotypic traits taken together, MANOVA) and in four of the six traits evaluated (ANOVAs). When plants were damaged, the reaction norms in response to low soil moisture of water use efficiency, root:shoot ratio and xylem water potential showed reduced slopes. While undamaged plants increased root biomass in response to low moisture, the opposite trend was found for damaged plants. The simultaneous occurrence of herbivory and drought events might curtail recruitment in plant populations of central Chile and other Mediterranean-type ecosystems due to the inability of damaged seedlings to show functional responses to low soil moisture. This finding is of ecological significance in view of current and projected trends of increased aridity in these ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号