首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Llopart A  Aguadé M 《Genetics》2000,155(3):1245-1252
Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregating sites. The observed numbers of preferred and unpreferred derived synonymous mutations can be explained by neutral mutational processes. In contrast, preferred mutations segregate at significantly higher frequency than unpreferred mutations, suggesting the action of natural selection. The polymorphism to divergence ratio is different for preferred and unpreferred changes, in agreement with their beneficial and deleterious effects on fitness, respectively. Preferred and unpreferred codons are nonrandomly distributed in the RpII215 gene, leading to a heterogeneous distribution of polymorphic to fixed synonymous differences across this coding region. This intragenic variation of the polymorphism/divergence ratio cannot be explained by different patterns of gene expression, mutation, or recombination rates, and therefore it indicates that selection coefficients for synonymous mutations can vary extensively across a coding region. The application of nucleotide composition stationarity tests in coding and flanking noncoding regions, assumed to behave neutrally, allows the detection of the action of natural selection when stationarity holds in the noncoding region.  相似文献   

2.
Natural selection influences synonymous mutations and synonymouscodon usage in many eukaryotes to improve the efficiency oftranslation in highly expressed genes. Recent studies of genecomposition in eukaryotes have shown that codon usage also variesindependently of expression levels, both among genes and atthe intragenic level. Here, we investigate rates of evolution(Ks) and intensity of selection (s) on synonymous mutationsin two groups of genes that differ greatly in the length oftheir exons, but with equivalent levels of gene expression andrates of crossing-over in Drosophila melanogaster. We estimates using patterns of divergence and polymorphism in 50 Drosophilagenes (100 kb of coding sequence) to take into account possiblevariation in mutation trends across the genome, among genesor among codons. We show that genes with long exons exhibithigher Ks and reduced s compared to genes with short exons.We also show that Ks and s vary significantly across long exons,with higher Ks and reduced s in the central region comparedto flanking regions of the same exons, hence indicating thatthe difference between genes with short and long exons can bemostly attributed to the central region of these long exons.Although amino acid composition can also play a significantrole when estimating Ks and s, our analyses show that the differencesin Ks and s between genes with short and long exons and acrosslong exons cannot be explained by differences in protein composition.All these results are consistent with the Interference Selection(IS) model that proposes that the Hill-Robertson (HR) effectcaused by many weakly selected mutations has detectable evolutionaryconsequences at the intragenic level in genomes with recombination.Under the IS model, exon size and exon-intron structure influencethe effectiveness of selection, with long exons showing reducedeffectiveness of selection when compared to small exons andthe central region of long exons showing reduced intensity ofselection compared to flanking coding regions. Finally, ourresults further stress the need to consider selection on synonymousmutations and its variation—among and across genes andexons—in studies of protein evolution.  相似文献   

3.
An ~1.6 ‐ kb fragment spanning the rp49 gene was sequenced in 16 lines of Drosophila subobscura from Madeira and in 22 lines of the endemic species D. madeirensis. Nucleotide diversity in D. subobscura from Madeira (π=0.0081) was similar to that in lines from Spain carrying the O3+4 chromosomal arrangement (π=0.0080). No significant genetic differentiation was detected between insular and continental O3+4 lines of D. subobscura. These results are compatible both with a rather recent and massive colonization, and with multiple colonization events from the continent. Nucleotide diversity in D. madeirensis (π=0.0076) was similar to that in D. subobscura, which deviates from the expectation, under strict neutrality, of a lower level of variation in an insular species with a small population size. The observed numbers of shared polymorphisms and of fixed differences between D. madeirensis and D. subobscura are compatible with the isolation model of speciation, where shared polymorphisms are due to common ancestry.  相似文献   

4.
Llopart A  Aguadé M 《Genetics》1999,152(1):269-280
The region encompassing the RpII215 gene that encodes the largest component of the RNA polymerase II complex (1889 amino acids) has been sequenced in Drosophila subobscura, D. madeirensis, D. guanche, and D. pseudoobscura. Nonsynonymous divergence estimates (Ka) indicate that this gene has a very low rate of amino acid replacements. Given its low Ka and constitutive expression, synonymous substitution rates are, however, unexpectedly high. Sequence comparisons have allowed the molecular clock hypothesis to be tested. D. guanche is an insular species and it is therefore expected to have a reduced effective size relative to D. subobscura. The significantly higher rate of synonymous substitutions detected in the D. guanche lineage could be explained if synonymous mutations behave as nearly neutral. Significant departure from the molecular clock hypothesis for synonymous and nonsynonymous substitutions was detected when comparing the D. subobscura, D. pseudoobscura, and D. melanogaster lineages. Codon bias and synonymous divergence between D. subobscura and D. melanogaster were negatively correlated across the RpII215 coding region, which indicates that selection coefficients for synonymous mutations vary across the gene. The C-terminal domain (CTD) of the RpII215 protein is structurally and functionally differentiated from the rest of the protein. Synonymous substitution rates were significantly different in both regions, which strongly indicates that synonymous mutations in the CTD and in the non-CTD regions are under detectably different selection coefficients.  相似文献   

5.
The fixation of weakly selected mutations can be greatly influenced by strong directional selection at linked loci. Here, I investigate a two-locus model in which weakly selected, reversible mutations occur at one locus and recurrent strong directional selection occurs at the other locus. This model is analogous to selection on codon usage at synonymous sites linked to nonsynonymous sites under strong directional selection. Two approximations obtained here describe the expected frequency of the weakly selected preferred alleles at equilibrium. These approximations, as well as simulation results, show that the level of codon bias declines with an increasing rate of substitution at the strongly selected locus, as expected from the well-understood theory that selection at one locus reduces the efficacy of selection at linked loci. These solutions are used to examine whether the negative correlation between codon bias and nonsynonymous substitution rates recently observed in Drosophila can be explained by this hitchhiking effect. It is shown that this observation can be reasonably well accounted for if a large fraction of the nonsynonymous substitutions on genes in the data set are driven by strong directional selection.  相似文献   

6.
The insertion site numbers of the retrotransposable elements (TE) 412, gypsy and bilbo were determined in individuals of five distinct natural populations of the endemic species Drosophila madeirensis from the island of Madeira. The TE distributions were compared to those of the paleartic, widespread and phylogenetically closely related species, D. subobscura. In situ hybridization and Southern blots showed that in D. madeirensis the number of insertion sites ranged between 10 and 15, three and six, and 35 and 42 for elements 412, gypsy and bilbo, respectively. The corresponding values for D. subobscura were similar. Two of these elements, 412 and gypsy, had very few insertions in the heterochromatin, unlike bilbo, which displayed a high heterochromatic insertion number. The Southern band polymorphism was very high, leading to within-population variation of 97.2%, whatever the population and the TE concerned. Using the polymorphic TE insertion sites as markers to analyse population structure by AMOVA, adapted for RAPD (Randomly Amplified Polymorphic DNA) data, we found small but significant genetic differences between the populations on Madeira. This slight differentiation, coupled with similar copy numbers for each TE between populations, suggests that the D. madeirensis species consists of a single, only slightly subdivided population. These data also show that insular populations and endemic species of Drosophila can have as many copies of TEs as more widespread species.  相似文献   

7.
A Sánchez-Gracia  J Rozas 《Heredity》2011,106(1):191-201
Chromosomal inversion polymorphism play a major role in the evolutionary dynamics of populations and species because of their effects on the patterns of genetic variability in the genomic regions within inversions. Though there is compelling evidence for the adaptive character of chromosomal polymorphisms, the mechanisms responsible for their maintenance in natural populations is not fully understood. For this type of analysis, Drosophila subobscura is a good model species as it has a rich and extensively studied chromosomal inversion polymorphism system. Here, we examine the patterns of DNA variation in two natural populations segregating for chromosomal arrangements that differentially affect the surveyed genomic region; in particular, we analyse both nucleotide substitutions and insertion/deletion variations in the genomic region encompassing the odorant-binding protein genes Obp83a and Obp83b (Obp83 region). We show that the two main gene arrangements are genetically differentiated, but are consistent with a monophyletic origin of inversions. Nevertheless, these arrangements interchange some genetic information, likely by gene conversion. We also find that the frequency spectrum-based tests indicate that the pattern of nucleotide variation is not at equilibrium; this feature probably reflects the rapid increase in the frequency of the new gene arrangement promoted by positive selection (that is an adaptive change). Furthermore, a comparative analysis of polymorphism and divergence patterns reveals a relaxation of the functional constraints at the Obp83b gene, which might be associated with particular ecological or demographic features of the Canary island endemic species D. guanche  相似文献   

8.
Restriction-site polymorphism at the rp49 gene region has been studied in 234 lines of Drosophila subobscura representing different gene arrangements for the O chromosome. The population surveyed (El Pedroso, Spain) was sampled four times in each of two consecutive years. The data indicate that the two chromosomal classes studied, O[ST] and O[3 + 4], are genetically differentiated in El Pedroso. Comparison of the present results with those previously obtained for two other populations further supports that, for a given chromosomal class, European populations are not genetically differentiated. This lack of differentiation at the rp49 region within O[ST] and within O[3 + 4] stands in contrast to the clear latitudinal clines found in Europe for these arrangements.  相似文献   

9.
Contrasting the efficacy of selection on the X and autosomes in Drosophila   总被引:1,自引:0,他引:1  
To investigate the relative efficacy of both positive and purifying natural selection on the X chromosome and the autosomes in Drosophila, we compared rates and patterns of molecular evolution between these chromosome sets using the newly available alignments of orthologous genes from 12 species. Parameters that may influence the relative X versus autosomal substitution rates include the relative effective population sizes, the male and female germline mutation rates, the distribution of allelic effects on fitness, and the degree of dominance of novel mutations. Our analysis reveals that codon usage bias is consistently greater for X-linked genes, suggesting that purifying selection consistently has greater efficacy on the X chromosome than on the autosomes across the Drosophila phylogeny. However, our results are less consistent with respect to the efficacy of positive selection, with only some lineages showing a higher substitution rate on the X chromosome. This suggests that either the distribution of selective effects of mutations or other relevant parameters are sufficiently variable across species to tip the balance in different ways in individual lineages. These data suggest that rates of substitution are not solely governed by adaptive evolution. This genome-wide analysis provides a clear picture that the efficacy of selection varies intragenomically and that this effect is markedly more consistent across the phylogeny in the case of purifying selection. Our results also suggest that simple models that predict systematic differences in rates of evolution between the X and the autosomes can only be made to be compatible with these Drosophila data if the relevant population genetic parameters that drive substitution rates differ among species and chromosomal contexts.  相似文献   

10.
Evolution at silent sites is often used to estimate the pace of selectively neutral processes or to infer differences in divergence times of genes. However, silent sites are subject to selection in favor of preferred codons, and the strength of such selection varies dramatically across genes. Here, we use the relationship between codon bias and synonymous divergence observed in four species of the genus Saccharomyces to provide a simple correction for selection on silent sites.  相似文献   

11.
Egg‐to‐adult viability is studied in the progeny of the flies of different genotypes according to S and F alleles of Amy locus of Drsophila subobscura . This component of fitness is observed in the single and mixed cultures with various frequencies of three genotypes (S/S, F/F and S/F) under conditions of low (LD) and high densities (HD) on three types of media with different carbohydrate composition. In such multifactorial experimental conditions, density‐ and frequency‐dependent selection on certain Amy genotypes was observed. Genotype frequencies and carbohydrate composition have significant effect on the viability of Amy genotypes. The significant intergenotypic differences exist, mostly at HD conditions. The heterozygous genotype S/F has generally lower viability which decreases with its increased frequencies, on all media at LD or HD. The results suggest a high level of complexity and interaction between these two types of balanced selection.  相似文献   

12.
The ethanol tolerance of adult transgenic flies of Drosophila containing between zero and ten unpreferred synonymous mutations that reduced codon bias in the alcohol dehydrogenase (Adh) gene was assayed. As the amino acid sequences of the ADH protein were identical in the four genotypes assayed, differences in ethanol tolerance were due to differences in the abundance of ADH protein, presumably driven by the effects of codon bias on translational efficiency. The ethanol tolerance of genotypes decreased with the number of unpreferred synonymous mutations, and a positive correlation between ADH protein abundance and ethanol tolerance was observed. This work confirms that the fitness effects of unpreferred synonymous mutations that reduce codon bias in a highly expressed gene are experimentally measurable in Drosophila melanogaster.  相似文献   

13.
14.
Patterns of sex chromosome and autosome evolution can be used to elucidate the underlying genetic basis of adaptative change. Evolutionary theory predicts that X-linked genes will adapt more rapidly than autosomes if adaptation is limited by the availability of beneficial mutations and if such mutations are recessive. In Drosophila, rates of molecular divergence between species appear to be equivalent between autosomes and the X chromosome. However, molecular divergence contrasts are difficult to interpret because they reflect a composite of adaptive and nonadaptive substitutions between species. Predictions based on faster-X theory also assume that selection is equally effective on the X and autosomes; this might not be true because the effective population sizes of X-linked and autosomal genes systematically differ. Here, population genetic and divergence data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba are used to estimate the proportion of adaptive amino acid substitutions occurring in the D. melanogaster lineage. After gene composition and effective population size differences between chromosomes are controlled, X-linked and autosomal genes are shown to have equivalent rates of adaptive divergence with approximately 30% of amino acid substitutions driven by positive selection. The results suggest that adaptation is either unconstrained by a lack of beneficial genetic variation or that beneficial mutations are not recessive and are thus highly visible to natural selection whether on sex chromosomes or on autosomes.  相似文献   

15.
In contrast to Drosophila melanogaster and Drosophila simulans, the yellow (y) gene region of Drosophila subobscura is not located in a region with a strong reduction in recombination. In addition, this gene maps very close to the breakpoints of different inversions that segregate as polymorphic in natural populations of D. subobscura. Therefore, levels of variation at the y gene region in this species relative to those found in D. melanogaster and D. simulans may be affected not only by the change in the recombinational environment, but also by the presence of inversion polymorphism. To further investigate these aspects, an approximately 5.4-kb region of the A (=X) chromosome including the y gene was sequenced in 25 lines of D. subobscura and in the closely related species Drosophila madeirensis and Drosophila guanche. The D. subobscura lines studied differed in their A-chromosomal arrangements, A(st), A(2), and A(1). Unlike in D. melanogaster and D. simulans, levels of variation at the y gene region of D. subobscura are not reduced relative to those found at other genomic regions in the same species (rp49, Acp70A, and Acph-1). This result supports the effect of the change in the recombinational environment of a particular gene on the level of neutral variation. In addition, nucleotide variation is affected by chromosomal polymorphism. A strong genetic differentiation is detected between the A(1) arrangement and either A(st) or A(2), but not between A(st) and A(2). This result is consistent with the location of the y gene relative to the breakpoints of inversions A(1) and A(2). In addition, the pattern of nucleotide polymorphism in A(st)+A(2) and A(1) seems to point out that variation at the y gene region within these chromosomal classes is in the phase transient to equilibrium. The estimated ages of these arrangements assuming a star genealogy indicate that their origin cannot predate the D. madeirensis split. Therefore, the present results are consistent with a chromosomal phylogeny where Am(1), which is an arrangement present in D. madeirensis but absent in current populations of D. subobscura, would be the ancestral arrangement.  相似文献   

16.
Nucleotide variation in populations originating from the recent range expansion of a species should reflect their adaptation to new habitats as well as their demographic history. A survey of nucleotide variation at 109 noncoding X-chromosome fragments in a European population of Drosophila melanogaster allowed identifying some candidates to have been recently affected by positive selection. Adaptive changes leave a spatial differential footprint that can be used to discriminate among candidates by extending their study to neighboring regions. Here, we surveyed variation at an approximately 190-kb region spanning a locus exhibiting a significantly skewed frequency spectrum. A stretch of approximately 12 kb with reduced variation was detected within a continuously sequenced region that included the focal fragment. Moreover, the regions flanking this stretch exhibited an excess of high-frequency derived variants. Application of maximum likelihood ratio and goodness-of-fit tests suggested that the pattern of variation detected at the studied region (at cytological bands 17C-17D) might have been shaped by a recent selective change, most probably at or around the phantom gene that encodes CYP306A1, a cytochrome P450 enzyme in the ecdysteroidogenic pathway.  相似文献   

17.
It is often hypothesized that slow inbreeding causes less inbreeding depression than fast inbreeding at the same absolute level of inbreeding. Possible explanations for this phenomenon include the more efficient purging of deleterious alleles and more efficient selection for heterozygote individuals during slow, when compared with fast, inbreeding. We studied the impact of inbreeding rate on the loss of heterozygosity and on morphological traits in Drosophila melanogaster. We analysed five noninbred control lines, 10 fast inbred lines and 10 slow inbred lines; the inbred lines all had an expected inbreeding coefficient of approximately 0.25. Forty single nucleotide polymorphisms in DNA coding regions were genotyped, and we measured the size and shape of wings and counted the number of sternopleural bristles on the genotyped individuals. We found a significantly higher level of genetic variation in the slow inbred lines than in the fast inbred lines. This higher genetic variation was resulting from a large contribution from a few loci and a smaller effect from several loci. We attributed the increased heterozygosity in the slow inbred lines to the favouring of heterozygous individuals over homozygous individuals by natural selection, either by associative over‐dominance or balancing selection, or a combination of both. Furthermore, we found a significant polynomial correlation between genetic variance and wing size and shape in the fast inbred lines. This was caused by a greater number of homozygous individuals among the fast inbred lines with small, narrow wings, which indicated inbreeding depression. Our results demonstrated that the same amount of inbreeding can have different effects on genetic variance depending on the inbreeding rate, with slow inbreeding leading to higher genetic variance than fast inbreeding. These results increase our understanding of the genetic basis of the common observation that slow inbred lines express less inbreeding depression than fast inbred lines. In addition, this has more general implications for the importance of selection in maintaining genetic variation.  相似文献   

18.
Colson I 《Molecular ecology》2002,11(8):1311-1316
Drosophila melanogaster and D. simulans from contrasted microenvironments (south- and north-facing slopes of Lower Nahal Oren Canyon in Israel) were tested for genetic differentiation at microsatellite loci, which might be linked to differential adaptation to local ecological factors. No overall genetic differentiation was observed in either species. This indicates that the contrasted selective pressures on the two sides of the valley are not strong enough to cause population subdivision in highly mobile species such as Drosophila. Significant differences in allele frequencies were observed at two microsatellite loci, but on the whole the level of divergence we observed is far lower than has been reported previously.  相似文献   

19.
The Xdh (rosy) gene is one of the best studied in the Drosophila genus from an evolutionary viewpoint. Here we analyze nucleotide variation in a 1875-bp fragment of the second exon of Xdh in Argentinian populations of the cactophilic D. buzzatii and its sibling D. koepferae. The major electrophoretic alleles of D. buzzatii not only lack diagnostic amino acids in the region studied but also differ on average from each other by four to 13 amino acid changes. Our data also suggest that D. buzzatii populations belonging to different phytogeographic regions are not genetically differentiated, whereas D. koepferae exhibits a significant pattern of population structure. The Xdh region studied is twice as polymorphic in D. buzzatii as in D. koepferae. Differences in historical population size or in recombinational environment between species could account for the differences in the level of nucleotide variation. In both species, the Xdh region exhibits a great number of singletons, which significantly departs from the frequency spectrum expected under neutrality for nonsynonymous sites and also for synonymous sites in D. buzzatii. These excesses of singletons could be the signature of a recent population expansion in D. buzzatii, whereas they may be simply explained as the result of negative selection in D. koepferae.  相似文献   

20.
Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号