首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetracapsuloides bryosalmonae is a myxozoan parasite of salmonids and freshwater bryozoans, which causes proliferative kidney disease (PKD) in the fish host. To test which fish species are able to transmit T. bryosalmonae to bryozoans, an infection experiment was conducted with 5 PKD-sensitive fish species from different genera. Rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, brook trout Salvelinus fontinalis, grayling Thymallus thymallus and northern pike Esox lucius were cohabitated with T. bryosalmonae-infected Fredericella sultana colonies and then subsequently cohabitated with statoblast-reared parasite free Bryozoa. Statoblasts from infected colonies were tested by PCR to detect cryptic stages of T. bryosalmonae, which may indicate vertical transmission of the parasite. In this study, brown trout and brook trout were able to infect Bryozoa, while there was no evidence that rainbow trout and grayling were able to do so. Few interstitial kidney stages of the parasite were detected by immunohistochemistry in brown trout and brook trout, while rainbow trout and grayling showed marked proliferation of renal interstitial tissue and macrophages with numerous parasite cells. Intraluminal stages in the kidney tubules were only detected in brown trout and rainbow trout. In contrast to previous observations, pike was not susceptible to PKD in these trials according to the results of T. bryosalmonae-specific PCR. No DNA of T. bryosalmonae was detected in any statoblast.  相似文献   

2.
Hatchery‐reared adult brown trout, Salmo trutta v. fario L., [215–335 mm standard length (LS), n = 82] were individually tagged and released into three sections of the Blanice River in May 2007. Wild populations of brown trout and grayling, Thymallus thymallus, L., in these sections and three non‐stocked control sections were also tagged. The recapture rate of hatchery‐reared adult brown trout after 6 months (18%, n = 15) was comparable to that of wild adult brown trout in stocked (15%, n = 14) and control (14%, n = 11) sections. The recapture rates of wild brown trout and grayling after 6 months were higher in control sections than in stocked sections, but the differences were not significant. The movement of recaptured large juvenile wild brown trout from stocked sections was significantly higher (36%) than from control sections (9%). Wild brown trout growth and grayling growth were unaffected by stocking with adult hatchery‐reared brown trout.  相似文献   

3.
The composition of the parasite fauna of brown trout Salmo trutta in nine British lakes from varying geographical locations has been analysed with regard to several selected physico-chemical parameters of the lakes. Significant correlations existed between the size of the lake and the number of parasite species harboured by trout and between the altitude of the lake and the number of parasite species present. No significant relationships were found between the number of parasite species and the geographical position, age, degree of isolation or CaCO, levels of the lakes. Similarly no relationships existed between the proportions of the parasites with different life cycles and the parameters examined, or between the presence or absence of a particular species of parasite and the lake's limno-logical features. It is concluded that the parasites of brown trout have been, and still are, capable of rapid and widespread dissemination throughout mainland Britain, and their occurrence in any lake is a result of the combination of a number of local factors. The predictive value of the conclusions is tested and discussed with special reference to the parasite fauna of trout in reservoirs.  相似文献   

4.
The habitat and diet choice and the infection (prevalence and abundance) of trophically transmitted parasites were compared in Arctic charr and brown trout living sympatrically in two lakes in northern Norway. Arctic charr were found in all main lake habitats, whereas the brown trout were almost exclusively found in the littoral zone. In both lakes the parasite fauna reflected the niche segregation between trout and charr. Surface insects were most common in the diet of trout, but transmit few parasites, and accordingly the brown trout had a relatively low diversity and abundance of parasites. Parasites transmitted by benthic prey such as Gammarus and insect larva, were common in both salmonid host species. Copepod transmitted parasites were much more common in Arctic charr, as brown trout did not include zooplankton in their diets. Parasite species that may use small fish as transport hosts, were far more abundant in piscivorous fish, especially brown trout. The seasonal dynamics in parasite infection were also consistent with the developments in the diet throughout the year. The study demonstrates that the structure of parasite communities of charr and the trout is highly dependent on shifts in habitat and diet of their hosts both on an annual base and through the ontogeny, in addition to the observed niche segregation between the two salmonid species.  相似文献   

5.
Grayling Thymallus thymallus in Lake Aursjøen, Norway, showed a remarkably uniform growth pattern throughout life, whereas brown trout Salmo trutta showed far more variation. In addition, a narrower age-length interval of maturation was found in grayling. The restricted life history variation in grayling is discussed and it is suggested that all grayling of Lake Aursjøen experience similar environmental conditions as juveniles, which induces low phenotypic variation. In contrast the existence of several spawning populations, adapted to as many as 28 different tributaries, may have created large life history variation in Aursjøen trout. Logistic models revealed that both age and length had significant, simultaneous effects on the maturation of both species. Furthermore, the sexes of trout differed in maturation patterns, i.e. males matured earlier and at smaller sizes than female conspecifics, but no difference was found between the sexes of grayling. In addition, larger sex-specific growth differences were found in trout. An absence of early maturing males in grayling and their presence in trout is discussed as a possible explanation of the restricted life history variation found between sexes of grayling. Male grayling experienced a larger mortality rate than did females, whereas no such differences were found in trout. It is suggested that grayling males invest more in reproduction than do females, due primarily to large investments in breeding behaviour. The equal mortality rates found for both sexes of trout, albeit males starting to spawn earlier than females, is probably explained by a female-selective fishing mortality.  相似文献   

6.
Drift-feeding salmonids in boreal streams face temperatures below physical optima for extensive periods of the year. Because juvenile salmonids react to low water temperatures by becoming nocturnal, knowledge about their foraging ability at low light intensities in cold water is needed to accurately estimate energy intake during non-summer conditions. In a laboratory stream channel, we studied temperature effects on the drift-feeding behaviour of juvenile Atlantic salmon, brown trout, and European grayling in simulated daylight and moonlight at temperatures ranging from 2 °C to 11 °C. Prey capture probability was positively related to temperature, but the temperature dependence did not agree with predictions of the Metabolic Theory of Ecology. Furthermore, reaction distance was positively related to temperature for the three species, which may be one of the underlying mechanisms responsible for the temperature effects on prey capture probability. Overall, the three species had similar capture rates at the different temperature and light levels, although there were species differences. European grayling had a slightly higher prey capture probability than brown trout, and brown trout had a shorter reaction distance than Atlantic salmon and European grayling. These results have implications for both energetics-based drift-foraging theory and for studies of winter ecology.  相似文献   

7.
SUMMARY. 1. This paper describes an analysis of results from a questionnaire (Giles, 1987) which requested information on the status of game fish stocks (especially wild brown trout Salmo trutta L.) from those Game Conservancy members who own or manage fisheries. Also included are data arising from fishery log book records which are used to indicate trends in brown trout catch per unit effort (CPUE) over past decades.
2. The key finding from questionnaire returns was the widespread reporting of apparent declines of wild brown trout stocks in a total of twenty-seven sites throughout Britain. The affected waters are geographically widespread from the south-west of England through southern and south-east England, south Wales, northern England and Scotland including the Western Isles. Suspected stock declines of migratory (sea) trout, salmon Salmo salar L. and grayling Thymallus thymallus L. were also reported. Where brown trout occur alone, a significantly higher proportion of questionnaire returns recorded a stock decline compared with fisheries containing both brown and rainbow trout Salmo gairdneri Richardson.
3. Trout catch records from a small selection of differing fishery types are presented and the value of such data in fish stock assessment is discussed.  相似文献   

8.
The foraging success of predators depends on how their consumption of prey is affected by prey density under different environmental settings. Here, we measured prey capture rates of drift-feeding juvenile brown trout and European grayling at different prey densities in an artificial stream channel at 5 and 11?°C. Capture rates were lower at 5 than at 11?°C, and the difference was most pronounced at high prey densities. At high prey densities, we also observed that European grayling had higher capture rates than brown trout. Type III functional response curves, i.e. sigmoidal relationships between capture rates and prey densities, fitted the data better than type I (linear) and II (hyperbolic) curves for all four combinations of temperatures and species. These results may explain the dominance of grayling in stream habitats with low water velocities and results such as these may be of use when developing foraging-based food web models of lotic ecosystems that include drift-feeding salmonids.  相似文献   

9.
The occurrence of Hexamita salmonis Moore, 1922 and Loma salmonae Putz, Hoffman and Dunbar, 1965 was investigated at 10 sites on the R. Itchen (five for brown trout only, three for rainbow trout only, and two for both brown trout and rainbow trout) and at three of its nine fish farms (two for rainbow trout, one for brown trout). Hexamita salmonis was recorded in brown trout from three river sites and the farm, and in rainbow trout from both farms and four river sites. Prevalence of Hexamita salmonis in farmed rainbow trout was higher than in farmed brown trout and was consistent with the former species being more susceptible to infection. H. salmonis was at significantly higher prevalence in rainbow trout from farm no. 5 than farm no. 2 for three size classes of fish. In wild brown trout and feral rainbow trout, the highest prevalences of H. salmonis were recorded at sites in the vicinity of farm no. 2. This distribution was consistent with an area of naturally high infection levels, and with infected fish unintentionally released from farm no. 2 serving as a source of infection, the infection subsequently becoming established in the river fish. Loma salmonae was recorded in wild brown trout and in rainbow trout from both farms. This appears to be the first recording of this parasite from British salmonids and also the first recording of the parasite from brown trout. The distribution of the parasite (particularly the prevalence being higher at farm no. 2 than farm no. 5) was consistent with it being introduced into the R. Itchen via rainbow trout from farm no. 2 (and probably no. 3) much of whose stock derived from imported Californian 'Shasta' rainbow trout.  相似文献   

10.
The diel rhythm of emergence from the gravel and displacement downstream has been studied in three salmonoid species: brown trout ( Salmo trutta L.), Atlantic salmon ( S. saiar L.) and grayling ( Thymallus thymallus L.). Grayling emerged in the morning but delayed downstream displacement until the night, while the Salmo species emerged just before downstream displacement chiefly at night.  相似文献   

11.
The results of the analysis of the contents of 274 brown trout stomachs taken over a period of one year from Llyn Alaw, in Anglesey, North Wales, are described. The annual composition and seasonal changes of the diet were determined using number, volume and occurrence methods. The bottom fauna is classified according to accessibility to the trout as food and the utilization and apparent selection of the fauna by the trout is discussed. Food in relation to trout size is considered in detail.  相似文献   

12.
To test the hypothesis that host-switching can be an important step in the speciation of gyrodactylid monogenean flatworms, we inferred the phylogeny within a cluster of parasites morphologically close to Gyrodactylus salaris Malmberg 1957, collected from Atlantic, Baltic and White Sea salmon (Salmo salar), farmed rainbow trout (Oncorhynchus mykiss), and grayling (Thymallus thymallus) from Northern Europe. The internal transcribed spacer region of the nuclear ribosomal gene was sequenced for taxonomic identification. Parasites on grayling from the White Sea Basin differed from the others by one nucleotide (0.08%), the remainder were identical to the sequence published earlier from Norway (G. salaris on salmon), England (Gyrodactylus thymalli on grayling), and the Czech Republic (unidentified salaris/thymalli on trout). For increased resolution, 813 nucleotides of the mitochondrial COI gene of 88 parasites were sequenced and compared with 76 published sequences using phylogenetic analysis. For all tree building algorithms (NJ, MP), the parasites formed a star-like phylogeny of six definite sister clades, indicating nearly simultaneous radiation. Average K2P distances between clades were 1.8-2.6%, and internal mean distances 0.2-1.1%. The genetic distance to the nearest known relative, Gyrodactylus lavareti Malmberg, was 24%. A variable salmon-specific mitochondrial Clade I was observed both in the Baltic Basin and in pathogenic populations introduced to the Atlantic and White Sea coasts. An invariable Clade II was common in rainbow trout farms in Sweden, Denmark and Finland; the same haplotype was also infecting salmon in a landlocked population in Russian Karelia, and in Oslo fjord and Sognefjord in Norway. Four geographically vicariant sister clades were observed on graylings: Clade III in the Baltic Sea Basin; Clade IV in Karelian rivers draining to the White Sea; Clade V in Norwegian river draining to Swedish lake V?nern; and Clade VI in rivers draining to Oslo fjord. The pattern fitted perfectly with the postglacial history of grayling distribution. Widely sampled clades from salmon and Baltic grayling had basal haplotypes in populations, which were isolated early during the postglacial recolonisation. The divergence between the six clades was clear and linked with their hosts, but not wide enough to support a species status for them. Parasites from the Slovakian type population of G. thymalli were not available, so this result does not mean that G. salaris and G. thymalli are synonyms. It is suggested that the plesiomorphic host of the parasite cluster was grayling, and the switch to salmon occurred at least once when the continental ice isolated Baltic salmon in an eastern freshwater refugium, 130,000 years ago. At the same time, parasites on grayling were split geographically and isolated into several allopatric refugia. The divergence among the parasite clades allowed a tentative calibration of the evolutionary rate, leading to an estimate of the divergence of 13.7-20.3% per million years for COI coding mtDNA. The results supported the hypothesis that parallel to the allopatric mode, host switch and instant isolation by host specificity can be operated as a speciation mechanism.  相似文献   

13.
The susceptibility of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) to the monogenean Discocotyle sagittata in the United Kingdom was assessed by experimental infection of naive fish. One month postinfection with 100 oncomiracidia/host, brown trout harbored significantly lower burdens (27.7 worms/host +/- 4.13 SE) than rainbow trout (47.8 worms/host +/- 3.90; P = 0.002). This indicates that the consistently lower prevalence and intensity of D. sagittata recorded in naturally infected farmed fishes reflects differences in susceptibility to the parasite. The outcome may be related to the comparatively short-term association of this parasite with rainbow trout (introduced to Britain in the 1880s) compared with the established native host-parasite association.  相似文献   

14.
1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour.  相似文献   

15.
A hitherto undescribed species of Scyphidia has been shown to infest the skin of brown trout. However, it is incapable of colonizing the skin of American brook trout, even when these fish are co-cultivated with heavily infested brown trout. Possible mechanisms accounting for this host/parasite specificity are discussed.  相似文献   

16.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

17.
The status of brown and rainbow trout as hosts of Pomphorhynchus laevis was studied in the field and by means of laboratory investigations. Field data indicated that rainbow trout might belong to the group of preferred hosts of P. laevis , whereas brown trout belonged to the group in which the parasite achieved less than optimal growth and maturation. This was confirmed by laboratory infections. In rainbow trout P. laevis attained up to three times the growth rate in brown trout and maturation occurred whereas in brown trout establishment was lower, growth slower and no parasites matured. Changes in the behaviour of infected Gammarus pulex induced by the presence of P. laevis cystacanths were such as to render the shrimps more vulnerable to predation by trout and other surface and mid-water feeding fish, and selective predation upon infeged G. pulex by fish was demonstrated. nvestigations into the stimuli necessary for eversion of cystacanths of P. laevis revealed that the most important factor was a non-specific component of bile, and it was concluded that cystacanths were likely to evert in any species of fish. Recognition of the different status of brown and rainbow trout as hosts of P. laevis still fails to explain some peculiarities in the distribution of the parasite in the British Isles, where in Britain it occurs in trout in only one river but in Ireland in all rivers throughout the country. It is suggested that the Irish parasites may constitute a different strain of P. laevis , since they use a different species of intermediate host and are better able to survive in brown trout.  相似文献   

18.
Brown trout ( Salmo trutta ) from anadromous River Lierelva, resident Lake Tunhovd, and resident Nordmarka stocks were exposed to Gyrodactylus salaris -infected salmon parr. The brown trout were fed pellets before the experiments, except for one group of the Nordmarka stock which was starved for 19 days before the experiments. The mean number of parasites declined directly and rapidly post infection for all groups of trout. There were no pronounced differences in resistance between the anadromous and the resident stocks. G. salaris infections tended to persist longer on starved than on fed trout of the Nordmarka stock. The maximum parasite persistence on trout was 50 days, and as parasite numbers increased on some fish parasite reproduction must have occurred on those trout. However, the limited susceptibility and marked innate resistance of trout to G. salaris establishment, development and reproduction, suggest parasite metapopulations will not survive on this species. Nevertheless, trout may still play a role in the dispersal of G. salaris within and between rivers.  相似文献   

19.
Food- and habitat-segregation in sympatric grayling and brown trout   总被引:2,自引:0,他引:2  
Grayling in the large reservoir Aursjøen, Norway, did not use the pelagic habitat and only trout larger than 187 mm and older than 4+ were caught there. Both species preferred the upper 8 m in the benthic habitat, but grayling were caught deeper than trout in August and September. Grayling were more closely associated with soft substratum than trout. Association with soft substratum decreased with increasing size in grayling, whereas this relationship was reversed in trout. A low number of empty stomachs indicated a low degree of food competition, but despite this the two species segregated in different key prey items—probably due to differences in mouth shapes. The key prey item for grayling was the benthic Eurycercus lamellatus , with zooplankton dominating the diet of the smallest individuals. Large trout (>300 mm) preferred the benthic Lepidurus arcticus , whereas medium trout (160–300 mm) ate predominantly the limnic-pelagic Bythotrephes longimanus , irrespective of habitat. The distribution of key prey items seemed to be the major factor controlling the habitat use, except in small trout which showed a generalist feeding pattern throughout the period. A generalist feeding pattern, a close association to coarse substratum and absence from the pelagic habitat indicated that small trout were negatively influenced by large individuals. Small grayling seemed less affected by aggressive encounters as they were less associated with coarse substratum and ate predominantly high-risk food such as zooplankton. These individuals probably did shoal in order to reduce predation risk.  相似文献   

20.
Eighty stocked lake trout Salvelinus namaycush (Salmonidae), collected from 2 locations in Lake Huron in May 1995, were examined for parasites. The parasite fauna of this top predator in Lake Huron was characterized by only 6 helminth species. Echinorhynchus salmonis infected all lake trout with a mean intensity of 163.9. The intensity of this acanthocephalan species significantly increased with host length and weight. Eubothrium salvelini infected 78 lake trout with a maximum number of 81 scoleces counted. Diplostomum sp., Cyathocephalus truncatus, Capillaria salvelini, and Neoechinorhynchus sp. infrequently infected lake trout. The low parasite species richness in these lake trout is believed to be due to their large size at stocking and to the loss of historical enzootic host-parasite relationships that followed the absence of this fish species in Lake Huron for 26 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号