首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Between Days 9 and 15 after oestrus, concentrations of pregnenolone, pregnenolone sulphate, dehydroepiandrosterone (DHEA), DHEA sulphate, androstenedione, oestrone and oestrone sulphate in free uterine fluid collected from non-pregnant gilts were greater than respective values in plasma (P less than 0.05). The total contents of pregnenolone, progesterone, DHEA, testosterone, oestrone and oestradiol in washings from pregnant uteri exceeded (P less than 0.05) respective non-pregnancy levels during this same period. Concentrations of pregnenolone, pregnenolone sulphate, DHEA, DHEA sulphate, androstenedione, oestrone, oestrone sulphate and oestradiol in free uterine fluid recovered from gravid uteri were also higher (P less than 0.05) than respective plasma values. By contrast, the progesterone concentration in uterine fluid from pregnant animals was lower (P less than 0.001) than the plasma value. Concentrations of DHEA, DHEA sulphate, androstenedione and oestrone sulphate in plasma of pregnant gilts between Days 9 and 15 after mating exceeded (P less than 0.05) the respective concentrations in unmated gilts between Days 9 and 15 after oestrus. Plasma levels of pregnenolone sulphate were lower (P less than 0.05) in the pregnant animals. We therefore suggest that the endometrium of the pig can concentrate steroid hormones in uterine fluid and that increases in steroid levels in this milieu between Days 9 and 15 after coitus reflect steroidogenesis by embryonic tissues and modification of enzyme activities within uterine tissues under the influence of progestagens. The pool of steroid sulphoconjugates present in uterine fluid between Days 9 and 15 post coitum could serve as an important precursor source for progestagen, androgen and oestrogen synthesis by tissues of pig embryos before implantation.  相似文献   

2.
The hypothesis was examined that the fetal membranes and the endometrium and myometrium of pregnant sheep have the ability to produce oestrogens and progesterone from exogenous precursors, and that this capacity might change during the course of pregnancy, and in relation to the onset of parturition. Cells were dispersed from samples of myometrium, endometrium, allantois, chorion and amnion from sheep at Day 50, Days 130-135 of pregnancy, and at term, in labour, and were incubated in the presence of pregnenolone and 20 alpha-dihydroprogesterone as potential precursors for progesterone production, and oestrone sulphate and androstenedione as potential precursors for oestrogen production. In addition, the metabolism of radioactive progesterone and oestrone sulphate by the dispersed cells was examined. Pregnenolone was converted to progesterone in significant amounts by dispersed cells from chorion and endometrium only. At Day 130 and at term this conversion was blocked by the addition of trilostane, an inhibitor of 3 beta-hydroxysteroid dehydrogenase activity. There was no significant change in the net production of progesterone from exogenous pregnenolone with gestation. 20 alpha-Dihydroprogesterone was converted to progesterone by all tissues, and at each stage of gestation. Formation of progesterone from 20 alpha-dihydroprogesterone was invariably greater than that from pregnenolone, but did not change with pregnancy. Oestrone sulphate was converted to oestrone and oestradiol by all tissues. In the myometrium and chorion this conversion was lower at term than at Day 50 of pregnancy. In contrast, there was very little conversion of androstenedione to unconjugated oestrogen, minimal activity being demonstrable only in dispersed cells from the chorion in some preparations. Radioactive progesterone was converted to radiochemically pure 17 alpha-hydroxyprogesterone by chorion, and to radiochemically pure 20 alpha-dihydroprogesterone by amnion, chorion, allantois and endometrium obtained at term pregnancy. At term [3H]oestrone sulphate was converted to radiochemically pure oestrone by all tissues. We conclude that there is a tissue-specific distribution of different steroid metabolizing enzyme activities in the fetal membranes and intrauterine tissues of pregnant sheep. Of the substrates examined, 20 alpha-dihydroprogesterone and oestrone sulphate were preferred for progesterone and oestrogen production, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Levels of steroid hormones, prolactin and protein were determined in trans-cervical flushings of uteri of 73 consenting women presenting for reversal of sterilization. Median total levels of steroids (pmol), prolactin (mu i.u.) and protein (mg) in the washings were: pregnenolone, 4.22; pregnenolone sulphate, 15.1; progesterone, 1.01; dehydroepiandrosterone (DHEA), 8.92; DHEA sulphate, 368; androstenedione, 2.23; testosterone, 1.04; oestrone, less than 0.7; oestrone sulphate, 0.49; oestradiol, 0.08; prolactin, 23.8; and protein, 5.75. Levels of these components of uterine flushings did not vary significantly between Days 6-10, 11-14, 15-20 and 21-28 after the onset of the previous menstrual period (P greater than 0.05). Uniform levels of free steroids in uterine washings throughout the menstrual cycle, and low free steroid/total protein ratios (all less than 3 pmol/mg), support other evidence for a paucity of steroid-binding proteins in human histotroph. The predominance of DHEA sulphate and of pregnenolone sulphate in human uterine washings is in accord with their abundance in plasma, and may provide an important precursor pool for de-novo steroidogenesis by human embryos before implantation. Our results support the view that human histotroph is a filtrate of plasma.  相似文献   

4.
Countercurrent transfer in the ovarian vascular pedicle elevates the concentration of steroid hormones in blood supplying the oviduct and periovarian part of the uterus during the estrous cycle in the pig. This study was conducted to determine whether during early pregnancy the arterial blood supply to the oviduct and uterus carries greater concentration of steroid hormone than systemic blood. The concentration of ovarian steroid hormones (progesterone, estradiol-17 beta, estrone, androstenedione and testosterone) was measured in 40 gilts on Days 12, 18, 25 or 35 of pregnancy. Silastic catheters were inserted: a) into the jugular vein, b) into the branch of uterine artery close to the ovary (proximal to the ovary) and c) into the branch of the uterine artery close to the cervix (distal to the ovary). On the day following surgery simultaneous blood samples from cannulated vessels were collected every 20 min for 3 hours. The concentration of steroid hormones was determined by radioimmunoassay. The mean concentrations of studied hormones in branches of the uterine artery proximal and distal to the ovary were significantly greater than in the jugular vein (P < 0.001) by 18 to 69% and 7 to 31%, respectively. The concentrations of hormones in proximal and distal to the ovary branch of the uterine artery were also significantly different (P < 0.001). The increase in concentrations of the measured hormones did not differ considerably between investigated days of pregnancy. It is concluded that during maternal recognition of pregnancy, formation of the corpus luteum of pregnancy, implantation of the embryo and the placenta elongation the oviduct and uterus are supplied with locally elevated concentration of steroid hormones compared to systemic blood.  相似文献   

5.
Oestrone sulphate was infused intravenously in saline solution into two, non-pregnant pony mares in repeated trials to simulate levels of the oestrogen found in plasma after midpregnancy in mares. Rates of infusion of oestrone sulphate ranged from 32 to 231 mg of oestrone equivalent per hour. Blood samples were taken from the opposite jugular vein for measurement of oestrone sulphate by radioimmunoassay. Plasma levels rose rapidly from the start of each infusion of the oestrogen and remained elevated over the hour-long periods, with concentrations as oestrone ranging from about 175 to 700 ng/ml. During each subsequent infusion with saline alone the oestrogen levels in plasma fell within 1 h to about 25% of the preceding values. Results were similar for each animal and simulation of plasma levels of oestrone sulphate in pregnancy was achieved.  相似文献   

6.
The concentration of prostaglandin F in utero-ovarian venous plasma and progesterone in jugular venous plasma were determined by radioimmunoassay in 3 cows over the last 2–3 weeks of gestation. Utero-ovarian prostaglandin F concentrations did not show any consistent pattern in two of three cows until 48–72 h before term when the levels rose sharply from 1 ng/ml to a maximum 4–9 ng/ml during labour. The concentration of progesterone in jugular venous plasma tended to fall gradually over the last 20 days of gestation with a further fall occurring 48-36 h before delivery.In two other cows at around 240 days of gestation the concentration of plasma progesterone in ovarian venous plasma was 50 to 150 times the concentration of progesterone in uterine or jugular venous plasma. It is concluded from these results that the ovaries are the major source of progesterone in cows during late pregnancy. The findings also suggest that prostaglandin F may be the luteolytic factor responsible for the sharp decline in plasma progesterone concentrations over the last 48-36 h preceding parturition.  相似文献   

7.
Concentrations of progesterone in uterine and arterial tissue and in uterine and jugular venous plasma were determined. Blood was collected on Days 4 and 9 postestrus from the jugular vein and the first and last venous branches draining each uterine cornu; uterine tissue and arteries were subsequently collected. Progesterone was greater (p less than 0.05) in the cranial third than in the middle or caudal thirds of the uterine horn adjacent to the corpus luteum (CL)-bearing ovary or in any third of the contralateral horn. Progesterone in uterine arterial segments adjacent to the CL-bearing ovary was higher (p less than 0.05) than in contralateral segments. Progesterone was higher (p less than 0.05) in blood from the first venous branch of the cranial third of the uterine cornu adjacent to the ovary with the CL, than in the last branch of the caudal third, or contralateral horn, or in jugular blood. When oviductal veins were resected on Day 9 postestrus, progesterone in the first vein draining the cranial third of the uterine cornu adjacent to the CL-containing ovary was not different (p greater than 0.05) 48 h after resection than in the same vessel in the opposite horn or in jugular blood. We concluded that progesterone and other ovarian products may be delivered to the uterus locally.  相似文献   

8.
The local destination transfer of prostaglandin E2 (PGE2) from the uterine lymph to arterial blood supplying the ovary and its retrograde transfer to arterial blood supplying the uterine horn and the effect of additional delivery of PGE2 into the ovary on the secretion of steroid hormones was studied in early pregnant gilts. The injection of PGE2 under the perimetrium caused an increase (P<0.001) in PGE2 concentration in both uterine venous effluent and ovarian and uterine arterial blood. The infusion of PGE2 into the ovarian artery increased the concentration of progesterone in ovarian venous blood on day 13 of pregnancy during (P<0.05) and after (P<0.001) infusion, and on day 14 of pregnancy after infusion (P<0.01). In conclusion, local destination transfer of PGE2 from uterine lymph and venous blood to the ovary may affect luteal function, and retrograde transfer of PGE2 to the arterial blood supplying the uterus may contribute to the prevention of regressive changes of the endometrium in early pregnant gilts.  相似文献   

9.
Concentrations of androgens (androstenedione, testosterone, 5 alpha-dihydrotestosterone), oestrogen and progesterone were measured in relation to pregnancy in the spotted hyaena (Crocuta crocuta). The gestation period was estimated to be about 110 days. There was a marked progressive rise in all the steroids starting in the first third of gestation. Chromatographic separation of plasma showed that much of the oestrogen is not oestradiol (only 12% of total measured) and that a significant fraction of the 'testosterone' may be dihydrotestosterone. In the final third of pregnancy, concentrations of androgen (especially testosterone plus dihydrotestosterone) in the female circulation reached the maximal values of adult males; the percentage of dihydrotestosterone relative to total testosterone plus dihydrotestosterone was higher in females (44 +/- 3.9%, n = 20) than in males (29.5 +/- 3.5%, n = 17). Plasma androstenedione was also significantly higher in females, but the increment was less than for oestrogen, testosterone and progesterone, and the temporal pattern was less clear. Samples from the maternal uterine and ovarian circulation showed that androstenedione is largely of ovarian origin and metabolized by the placenta, while testosterone, progesterone and oestrogen are primarily of placental or uterine origin. Fetal samples were taken from two mixed-sex sets of twins and one male singleton. Gradients across the placenta measured in the fetal circulation confirmed that the placenta metabolizes androstenedione and is a source of testosterone for the female fetus; there were no consistent differences in androgens between male and female fetuses. It is suggested that the conspicuous masculinization of the female spotted hyaena, especially evident in the external genitalia at birth, is a result, at least in part, of high placental production of testosterone or dihydrotestosterone derived from the metabolism of high maternal androstenedione.  相似文献   

10.
Ewes were actively immunized against oestrone-6-(O-carboxymethyl)-oxime-bovine serum albumin, 17 beta-oestradiol-6-(O-carboxymethyl)oxime-bovine serum albumin or bovine serum albumin (controls). All 4 control ewes, 1 of 5 oestradiol-immunized ewes and 1 of 5 oestrone-immunized ewes had regular oestrous cycles. The other animals displayed oestrus irregularly or remained anoestrous. The plasma concentrations of LH and, to a lesser degree, FSH were increased relative to those in control ewes on Days 11-12 after oestrus or a similar total period after progestagen treatment in ewes not showing oestrus. The ovaries were examined and jugular venous blood, ovarian venous blood and follicular fluid were collected at laparotomy on Days 9-10 of the oestrous cycle. The ovaries of immunized ewes were heavier than those of control ewes. There were no CL in 5 of the immunized ewes but in the other 5 there were more CL than in the control ewes. Ovaries from 4 of 5 oestrone-immunized ewes contained luteinized follicles, while ovaries from 4 of 5 oestradiol-immunized ewes contained very large follicles with a degenerated granulosa and a hyperplastic theca interna. Both types of follicles produced progesterone, detectable in ovarian venous plasma and production of other steroids, particularly androstenedione, was also increased. The steroid-binding capacity of plasma was increased in the immunized ewes. The binding capacity of follicular fluid for oestradiol-17 beta and oestrone was similar to that of jugular venous plasma from the same ewes. These results suggest that immunization against oestrogens disrupts reproductive function by interfering with the feedback mechanisms controlling gonadotrophin secretion.  相似文献   

11.
Infusion of nonradiolabelled dehydroepiandrosterone sulphate (DHA-S) has been used to investigate the possible formation of oestrone sulphate via a sulphated conjugate of androstenedione. The metabolic clearance rate (MCR) of DHA-S also was measured and the mean value (25 1/24h) was similar to values reported using isotopic techniques. Although conversion of DHA-S to 5-androstenediol, a steroid with oestrogenic properties, was detected during infusion of DHA-S, there were no significant increases in plasma levels of conjugated androstenedione or oestrone sulphate. The MCR's oestrone sulphate measured using infusion of nonradiolabelled steroid in two menopausal women were 99 1/24h and 121 1/24h. For one woman, the production rate of oestrone sulphate, calculated from the conversion of oestrone and oestradiol to oestrone sulphate (151 nmol/day) was similar to the measured production rate of oestrone sulphate (144 nmol/day). It is concluded that in menopausal women, oestrone sulphate is derived from conversion of oestrone and oestradiol with no formation occurring via conjugated androstenedione.  相似文献   

12.
A simple and rapid (less than 2 h) immunoassay method has been developed based upon a novel separation technique called LIDIA (Ligand Differentiation Immunoassay), enabling direct estimation of the concentration of oestrone sulphate in ethanolic extracts of blood plasma. An antiserum raised against oestrone-3-glucuronyl-BSA was used which showed a higher cross-reaction with the sulphate than the glucuronide metabolite. The assay had a sensitivity of 5.2 pg/tube and acceptable inter-(less than 18%) and intra-(less than 8.5%) assay precision. Analysis of samples of peripheral venous plasma obtained daily from Pony mares showed that the mean concentration of oestrone sulphate started to rise from a baseline value (less than 300 pg/ml) at 6 days and reached a peak (greater than 850 pg/ml) at 2 days before follicular rupture as determined by rectal palpation. Progesterone concentrations only started to rise above baseline (less than 0.5 ng/ml) on the day of ovulation and reached a peak 8 days later. Analysis of samples obtained during the first 30 days of pregnancy showed that there was no increase in oestrone sulphate at the time oestrus would have been expected had the mares not conceived.  相似文献   

13.
P Kim  M Hedman  B de la Torre  E Diczfalusy 《Steroids》1985,45(3-4):235-245
Litter-mate adult male rats were treated with daily intramuscular injections of ACTH (10.5 micrograms), dexamethasone (2.0 mg), ethynyl estradiol (1.7 micrograms) and hCG (5 IU) for three consecutive days. The animals were sacrificed on the fourth day and the intratesticular and peripheral plasma steroid levels were analyzed. The steroids measured by radioimmunoassay included pregnenolone, 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone, 17-hydroxyprogesterone, androstenedione, testosterone and dihydrotestosterone. In addition, the sulphoconjugated forms of pregnenolone, dehydroepiandrosterone, testosterone and dihydrotestosterone were estimated in the peripheral blood. The administration of ACTH diminished the intratesticular levels of all steroids studied. Also dexamethasone and ethynyl estradiol treatment suppressed all intratesticular steroid levels, except that of pregnenolone (the former) and of 17-hydroxyprogesterone (the latter). The suppressive effect of ethynyl estradiol was strongest on the levels of the delta 5-steroids and that of dexamethasone on the delta 4-steroids; the latter was significantly stronger than the effect of ACTH. The stimulatory effect of hCG was limited to the metabolism of progesterone and was restricted to the sequence: 17-hydroxyprogesterone----androstenedione----testosterone---- dihydrotestosterone. Dexamethasone-suppression, and hCG-stimulation of the intratesticular levels of delta 4-steroids, was mirrored by corresponding changes in the peripheral plasma levels, with the exception of the plasma levels of androstenedione which were not influenced by any of the treatments studied. Also the suppression of intratesticular testosterone and dihydrotestosterone levels by ACTH, dexamethasone, or ethynyl estradiol was closely reflected by their plasma levels both in the unconjugated and sulphoconjugated forms. On the hand, the administration of ACTH diminished the intratesticular levels of pregnenolone and progesterone but significantly increased those in the plasma. Moreover, both ACTH and ethynyl estradiol reduced the levels of all delta 5-steroids in testicular tissue, but not in the peripheral plasma, although they decreased the circulating levels of pregnenolone sulphate and dehydroepiandrosterone sulphate. The data are interpreted as suggesting that the hormonal agents studied interfere with testicular steroidogenesis through different mechanisms.  相似文献   

14.
The changes in concentration of oestrone, oestradiol (-17alpha and -17beta), oestrone sulphate and the oestradiol sulphates have been measured in allantoic and amniotic fluids and in maternal peripheral plasma throughout gestation. Oestrone sulphate was the major oestrone present in all of the fluids. It was measurable in allantoic fluid before Day 52 and reached a peak concentration of 475 ng/ml around Day 133. A lower peak occurred in the amniotic fluid around Day 110. The changes in oestradiol sulphates in allantoic fluid were similar to those of oestrone sulphate but at a much lower level. Considerable fluctuation was observed in the oestradiol sulphate concentrations in amniotic fluid. The ratio of oestradiol-17alpha sulphate to oestradiol-17beta sulphate was considerably higher in amniotic fluid than in allantoic fluid. Consistent changes in the levels of oestrone and the oestradiols were found in amniotic fluid but not in allantoic fluid during the second half of pregnancy. In maternal peripheral plasma oestrone sulphate was measurable before Day 72. In the limited number of samples analysed no difference in oestrogen concentration due to the sex of the fetus was evident in any of the fetal or maternal fluids.  相似文献   

15.
Concentrations of LH/CG, androstenedione and testosterone rose in early pregnancy to maximum values at 6--10 weeks. Thereafter LH/CG levels declined and androstenedione and testosterone levels remained at plateau values or declined until term. Progesterone, oestradiol-17 beta and oestrone increased after ovulation and remained high throughout pregnancy. At 12 weeks, when LH/CG levels were falling, progesterone and oestradiol rose well above the luteal-phase levels which were maintained for the first 12 weeks. Progesterone declined in the 2 weeks before birth, while oestradiol and oestrone remained high. Pregnancies of an unknown stage were dated by reference to a graph of uterine diameter, measured by abdominal palpation, in animals at known times after conception. Measurement of progesterone concentrations during the conception cycle gave more accurate dating and showed that the gestation length was 144 days.  相似文献   

16.
This study was conducted 1) to determine if the secretion of progesterone, as an index of ovarian activity, during the estrous cycle of nonseasonal Shiba goats is affected by seasonal changes, and 2) to learn if the pulsatile secretion of ovarian progesterone can be estimated from samples obtained by cannulation into the caudal vena cava via the femoral vein. Progesterone concentrations in jugular venous plasma during the estrous cycle in spring (May) were similar to those in autumn (November). Plasma progesterone concentrations in the jugular vein and caudal vena cava monitored for 10 h on Day 12 of the estrous cycle in spring were similar to those in autumn. The mean concentration (21.9 to 28.9 ng/ml) and the pulse frequency (6.2 to 7.4 pulses/10 h) of plasma progesterone in the caudal vena cava during both seasons were 3.1- to 4.7-fold and 1.7- to 2.4-fold those in the jugular vein, respectively. The degree of change in the peak magnitude and the base-line concentration of progesterone were higher in the caudal vena cava than in the jugular vein. These results indicate that progesterone secretion during the estrous cycle in nonseasonal goats is not affected by seasonal changes, and suggest that the pulsatile secretion of ovarian progesterone can be evaluated better from samples obtained from the caudal vena cava, near where progesterone is released, than from those obtained from the jugular vein.  相似文献   

17.
The steroidogenic potential of various physiological compartments within the ovary of the hen were examined using in vitro systems. Three-hour incubations of individual whole small follicles (less than 1 mm-1 cm) or 100,000 collagenase-dispersed theca cells of the five largest ovarian follicles (F1-F5) were conducted in 1 ml of Medium 199 at 37 degrees C in the presence and absence of luteinizing hormone (LH) (0.39, 0.78, 1.56, 3.13 and 6.25 ng), progesterone (5 ng), and dehydroepiandrosterone (DHEA, 5 ng). Steroid output was measured by radioimmunoassay of incubation media. Progesterone was not produced by small follicles although they are a major source of DHEA and estradiol and a significant source of androstenedione. Output of DHEA, androstenedione and estradiol was highly stimulated by LH. The substrate for androstenedione and estradiol in small follicles is probably DHEA. Output of DHEA and androstenedione in theca cells of F2-F5 was stimulated by LH in a dose-related manner. A dose-response relationship between estradiol output and the concentration of LH in media was not apparent in theca cells from F2-F5. Steroidogenesis in theca tissue of large follicles occurs predominantly via the delta 4 pathway. The ability of these theca cells to metabolize progesterone to androstenedione is lost between 36 and 12 h before ovulation. Their ability to metabolize DHEA to androstenedione is still present 12 h before ovulation. Aromatase activity is significantly reduced between 36 and 12 h before ovulation. These data indicate that both large and small follicles can be stimulated by LH. The small follicles are the major source of estrogen. As the large yolky follicles mature, steroidogenesis shifts from the delta 5 to the delta 4 pathway. By 12 h before ovulation, the F1 follicle has lost the ability to convert progesterone to androstenedione. The inability of the largest ovarian follicle to convert progesterone to androstenedione contributes at least in part to the preovulatory increase in the plasma concentration of progesterone that generates the preovulatory LH surge by positive feedback.  相似文献   

18.
Transient Receptor Potential Melastatin 3 (TRPM3) is a widely expressed calcium-permeable non-selective cation channel that is stimulated by high concentrations of nifedipine or by physiological steroids that include pregnenolone sulphate. Here we sought to identify steroids that inhibit TRPM3. Channel activity was studied using calcium-measurement and patch-clamp techniques. Progesterone (0.01-10μM) suppressed TRPM3 activity evoked by pregnenolone sulphate. Progesterone metabolites and 17β-oestradiol were also inhibitory but the effects were relatively small. Dihydrotestosterone was an inhibitor at concentrations higher than 1μM. Corticosteroids lacked effect. Overlay assays indicated that pregnenolone sulphate, progesterone and dihydrotestosterone bound to TRPM3. In contrast to dihydrotestosterone, progesterone inhibited nifedipine-evoked TRPM3 activity or activity in the absence of an exogenous activator, suggesting a pregnenolone sulphate-independent mechanism of action. Dihydrotestosterone, like a non-steroid look-alike compound, acted as a competitive antagonist at the pregnenolone sulphate binding site. Progesterone inhibited endogenous TRPM3 in vascular smooth muscle cells. Relevance of TRPM3 or the progesterone effect to ovarian cells, which have been suggested to express TRPM3, was not identified. The data further define a chemical framework for competition with pregnenolone sulphate at TRPM3 and expand knowledge of steroid interactions with TRPM3, suggesting direct steroid binding and pregnenolone sulphate-independent inhibition by progesterone.  相似文献   

19.
Local transfer of 125I-labeled oxytocin from the ovarian vein to arteries supplying the ovary, the oviduct, and the tip of the uterine born has been investigated. In five sheep, 10 infusions of 125I-oxytocin over a period of 1 h were performed, and the concentration of labeled polypeptide in the peripheral plasma was compared to ovarian arterial plasma. During 2 consecutive infusions into each animal's ovarian vein, blood was collected simultaneously from the following sites: ovarian branch of the ovarian artery (OBOA), tubal branch of the ovarian artery (TBOA), uterine branch of the ovarian artery (UBOA), and from the jugular vein. In all experiments the concentration of 125I-oxytocin in ovarian arterial plasma was higher than in peripheral plasma. The ratio of ovarian artery/jugular vein for 125I-oxytocin was: OBOA 2.8, TBOA 1.8, UBOA 1.6. Based on a 4 ml/min blood flow through ovarian arteries supplying ovary, oviduct, and the tip of the uterine horn, the local transfer of the total amount of oxytocin infused was estimated to be about 1% (range: 0.1-4.4%). Analysis of variance did not reveal significant differences in the exchange ratios between OBOA, TBOA, and OBOA. However, the variances within these groups are significant, presumably because of anatomical variation in the degree of surface contact area between arteries and veins at the ovarian pedicle. It is concluded that polypeptides are locally recirculated to ovaries, oviduct, and the tip of the uterine horn in a higher concentration than is supplied by peripheral blood. This could provide a mechanism for local distribution and concentration of the ovarian peptides that regulate reproductive function.  相似文献   

20.
Progesterone content in blood from paired ovarian and uterine veins as well as from jugular veins of cows and reindeers was studied in the estrous cycle lutein phase and at the earlier stages of pregancy. In the both species, maximal progesterone concentration was detected in blood from vein of the ovary carrying corpus luteum (p < 0.001). In cows, a higher hormone concentration, as compared with jugular vein, has also been determined in vein of the uterus horn closest to ovary with corpus luteum (p < 0.01). In reindeers, blood from all studied vessels of reproductive organs had the progesterone concentration that was statistically significantly higher (p < 0.001) than that from jugular vein. In cows, progesterone concentration in blood from the ovarian vein was found to be higher when corpus luteum was located on the right ovary (p < 0.05) as compared with left-side corpus luteum location. No functional asymmetry of ovaries was revealed in reindeers. A possible role of mechanisms of the hormone local transport between ovary and uterus in adaptation of ruminants to reproduction under Nordic conditions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号