首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general glutathione (GSH) deficiency occurs in many tissues of the aging mouse. However, there is no information on GSH in the aging brain even though it has been involved in a number of neurobiologic reactions. To this end, C57BL/6 mice, 3-31 months old, representing the growth, maturation, and aging periods of the life-span were studied. Brain cortex, hippocampus, and stem samples were dissected, processed, and analyzed specifically for reduced and oxidized glutathione (GSH, GSSG) and cyst(e)ine using high performance liquid chromatography with dual electrochemical detection. The GSH content of each brain region varied in the order brain cortex greater than brain hippocampus greater than brainstem. However, the GSH profiles of all regions were the same through the life-span, namely, high values during growth dropping to a maturation plateau and then decreasing 30% during aging. In contrast to GSH, the order of cysteine levels was brain cortex less than brain hippocampus less than brainstem and no life-span changes occurred in any region. In addition, the brain GSSG and cystine contents of all regions were very low and did not change during the life-span. Thus, the GSH loss was not accountable by oxidation to GSSG or degradation to cyst(e)ine. Altogether these results demonstrated a GSH deficiency in brain tissues of aging mice like that found previously in other tissues. These findings suggest an increased susceptibility of the aging brain to oxidative damage.  相似文献   

2.
Rahman I  Kode A  Biswas SK 《Nature protocols》2006,1(6):3159-3165
The spectrophotometric/microplate reader assay method for glutathione (GSH) involves oxidation of GSH by the sulfhydryl reagent 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) to form the yellow derivative 5'-thio-2-nitrobenzoic acid (TNB), measurable at 412 nm. The glutathione disulfide (GSSG) formed can be recycled to GSH by glutathione reductase in the presence of NADPH. The assay is composed of two parts: the preparation of cell cytosolic/tissue extracts and the detection of total glutathione (GSH and GSSG). The method is simple, convenient, sensitive and accurate. The lowest detection for GSH and GSSG is 0.103 nM in a 96-well plate. This method is rapid and the whole procedure takes no longer than 15 min including reagent preparation. The method can assay GSH in whole blood, plasma, serum, lung lavage fluid, cerebrospinal fluid, urine, tissues and cell extracts and can be extended for drug discovery/pharmacology and toxicology protocols to study the effects of drugs and toxic compounds on glutathione metabolism.  相似文献   

3.
Limited data in animal models suggest that colonic mucosa undergoes adaptive growth following massive small bowel resection (SBR). In vitro data suggest that intestinal cell growth is regulated by reactive oxygen species and redox couples [e.g., glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) redox]. We investigated the effects of SBR and alterations in redox on colonic growth indexes in rats after either small bowel transection (TX) or 80% midjejunoileal resection (RX). Rats were pair fed +/- blockade of endogenous GSH synthesis with buthionine sulfoximine (BSO). Indexes of colonic growth, proliferation, and apoptosis and GSH/GSSG and Cys/CySS redox potentials (E(h)) were determined. RX significantly increased colonic crypt depth, number of cells per crypt, and epithelial cell proliferation [crypt cell bromodeoxyuridine (BrdU) incorporation]. Administration of BSO markedly decreased colonic mucosal GSH, GSSG, and Cys concentrations in both TX and RX groups, with a resultant oxidation of GSH/GSSG and Cys/CySS E(h). BSO did not alter colonic crypt cell apoptosis but significantly increased all colonic mucosal growth indexes (crypt depth, cells/crypt, and BrdU incorporation) in both TX and RX groups in a time- and dose-dependent manner. BSO significantly decreased plasma GSH and GSSG, oxidized GSH/GSSG E(h), and increased plasma Cys and CySS concentrations. Collectively, these data provide in vivo evidence indicating that oxidized colonic mucosal redox status stimulates colonic mucosal growth in rats. The data also suggest that GSH is required to maintain normal colonic and plasma Cys/CySS homeostasis in these animal models.  相似文献   

4.
The effect of adding either reduced (GSH) or oxidized (GSSG) glutathione to intact human erythrocytes was investigated by 1H-spin echo NMR, which allows direct observation of relatively concentrated low molecular weight compounds within intact cells. A specific region of the spectrum was affected by addition of GSH, with the appearance of new peaks that were diagnostic of an increase of intracellular GSH. These changes did not occur in hemolysates, and did not involve extra-cytosol GSH either free or membrane-bound. These results indicate that the intracellular redox balance of glutathione is shifted toward the reduced state by exogenous glutathione, possibly via a signal transferring system of the cell membrane.  相似文献   

5.
The effect of x-rays on GSH and GSSG levels in blood was studied in mice and humans. An HPLC method that we recently developed was applied to accurately determine GSSG levels in blood. The glutathione redox status (GSH/GSSG) decreases after irradiation. This effect is mainly due to an increase in GSSG levels. Mice received single fraction radiotherapy, at total doses of 1.0 to 7.0 Gy. Changes in GSSG in mouse blood can be detected 10 min after irradiation and last for 6 h within a range of 2.0–7.0 Gy. The highest levels of GSSG (20.1 ± 2.9 ), a 4.7-fold increase as compared with controls) in mouse blood are found 2 h after radiation exposure (5 Gy). Breast and lung cancer patients received fractionated radiotherapy at total doses of 50.0 or 60.0 Gy, respectively. GSH/GSSG also decreases in humans in a dose–response fashion. Two reasons may explain the radiation-induced increase in blood GSSG: (a) the reaction of GSH with radiation-induced free radicals resulting in the formation of thyl radicals that react to produce GSSG; and (b) an increase of GSSG release from different organs (e.g., the liver) into the blood. Our results indicate that the glutathione redox ratio in blood can be used as an index of radiation-induced oxidative stress. © 1997 Elsevier Science Inc.  相似文献   

6.
Biological thiol compounds are classified into high-molecular-mass protein thiols and low-molecular-mass free thiols. Endogenous low-molecular-mass thiol compounds, namely, reduced glutathione (GSH) and its corresponding disulfide, glutathione disulfide (GSSG), are very important molecules that participate in a variety of physiological and pathological processes. GSH plays an essential role in protecting cells from oxidative and nitrosative stress and GSSG can be converted into the reduced form by action of glutathione reductase. Measurement of GSH and GSSG is a useful indicator of oxidative stress and disease risk. Many publications have reported successful determination of GSH and GSSG in biological samples. In this article, we review newly developed techniques, such as liquid chromatography coupled with mass spectrometry and tandem mass spectrometry, for identifying GSH bound to proteins, or for localizing GSH in bound or free forms at specific sites in organs and in cellular locations.  相似文献   

7.
Allelic variation in the mouse beta globin gene complex (Hbb) produces structurally different beta globins in different mouse strains. Like humans, mice with HbbS alleles produce a single beta globin with one reactive cysteine (beta Cys93). In contrast, mice with HbbD alleles produce two structurally different beta globins, each containing an additional cysteine (beta Cys13). beta Cys93 forms mixed disulfides with glutathione and plays a pivotal role in the activities of hemoglobin, glutathione, and nitric oxide. Similar roles for mouse beta Cys13 have not been described. We used capillary electrophoresis to compare reduced glutathione (GSH), glutathione disulfide (GSSG), and S-glutathionyl hemoglobin levels in erythrocytes from inbred C57BL/6J (homozygous HbbS/S) and 129S1/SvImJ (homozygous HbbD/D) mice and their homozygous and heterozygous B6129S/F2J hybrid offspring. S-glutathionyl hemoglobin was nearly undetectable in inbred or hybrid mice with only monocysteinyl beta globins (HbbS/S) but represented up to 10% of total hemoglobin in mice with polycysteinyl beta globins (HbbS/D or HbbD/D). The stepwise increase in beta globin sulfhydryl group concentration in HbbS/S, HbbS/D, and HbbD/D F2 mice was associated with increasing hemoglobin-bound glutathione and decreasing free glutathione (GSH + GSSG) concentrations. Total erythrocyte glutathione (GSH + GSSG + hemoglobin-bound) was not significantly different between groups. In vitro studies showed that beta Cys13 in mouse HbbD beta globins was more susceptible to disulfide exchange with GSSG than beta Cys93. We conclude that reactive beta globin sulfhydryl group concentration is genetically determined in mice, and that polycysteinyl beta globins markedly influence intraerythrocyte glutathione distribution between free and hemoglobin-bound compartments. Although Hbb heterozygosity and polycysteinyl beta globins are common in wild mouse populations, all common human beta globins contain only one reactive cysteine, and homozygosity is the norm. These fundamental differences in mouse and human beta globin genetics have important implications for the study of mouse biology and for the use of some mouse strains as models for humans.  相似文献   

8.
Size exclusion chromatographic analyses showed that Ca2+‐free VILIP‐1 contained both monomeric and dimeric forms, while no appreciable dimerization was noted with Ca2+‐free VILIP‐3. Swapping of EF‐hands 3 and 4 of VILIP‐1 with those of VILIP‐3 caused the inability of the resulting chimeric protein to form dimeric protein. Nonreducing SDS‐PAGE analyses revealed that most of the dimeric VILIP‐1 was noncovalently bound together. Reduced glutathione (GSH)/oxidized glutathione (GSSG) treatment notably enhanced the formation of disulfide‐linked VILIP‐1 dimer, while Ca2+ and Mg2+ enhanced disulfide dimerization of VILIP‐1 marginally in the presence of thiol compounds. Cys‐187 at the C‐terminus of VILIP‐1 contributed greatly to form S‐S‐crosslinked dimer as revealed by mutagenesis studies. The ability of GSH/GSSG‐treated VILIP‐1 to activate guanylyl cyclase B was reduced by substituting Cys‐187 with Ala. Together with disulfide dimer of VILIP‐1 detected in rat brain extracts, our data may imply the functional contribution of disulfide dimer to the interaction of VILIP‐1 with its physiological target(s). Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
A method for the measurement of free and bound cyst(e)ine and the sum thereof has been developed. In adult human blood, cyst(e)ine is distributed equally between that which is bound to plasma proteins and that which is free. Cyst(e)ine is bound predominantly to albumin, and this binding is not an in vitro artifact. Cysteine bound to plasma proteins may be displaced by homocysteine which competes for the available sulfhydryl groups of plasma proteins. Rats starved for 8 days had a significant decrease in both plasma free cyst(e)ine and bound cysteine. These data suggest that present methods for the determination of plasma cyst(e)ine under-estimate the quantity of cyst(e)ine in the plasma available for cellular metabolism.  相似文献   

10.
Glutathione and cysteine are major antioxidants in blood that are associated with health and longevity. To ensure their measurement, careful attention to avoid auto-oxidation is necessary to stabilize the samples. Since no report of these compounds has been reported in children, our goal was to determine their levels of reduced and oxidized glutathione (GSH and GSSG) and cysteine (Cys and CSSC), To this end, 140 healthy children, ages 2 to 9 years from the Louisville Twin Study were studied. Blood samples were collected and analyzed for GSH, GSSG, Cys, and CSSC by our HPLC dual electrochemical method. The results showed that GSH and total GSH (GSH + GSSG) levels for monozygotic (MZ) twins were significantly higher (P < 0.001) than levels for dizygotic (DZ) twins. However, the opposite occurred for Cys and total Cys (Cys + CSSC) in that the levels were significantly higher for DZ twins than for MZ twins. (P < 0.005-0.013). In spite of this marked difference in zygosity, the within-pair correlations for twin pairs used for estimating heritability suggested that there was a major environmental influence for total GSH and total Cys. Finally. GSH levels were significantly lower for young (2-9 years) children than adults (P < 0.001).  相似文献   

11.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

12.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

13.
Although the importance of glutathione in protection against oxidative stress is well recognized, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13-14) aged 20-30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH) decreased by 13% with exercise. Of the measured red blood cell (RBC) antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

14.
Summary. Measurement of plasma total cysteine rather than free dimeric cystine gives a better indication of cysteine status in homocystinuric patients. This is the result of displacement of cysteine from albumin by homocysteine and is related to the plasma homocysteine concentration. In control subjects the free/bound cyst(e)ine ratio was independent of albumin and total cysteine concentrations. In homocystinuric (HCU) patients both free and total cyst(e)ine values differed significantly from control values (P < 0.001) but whilst free cystine considerably overlapped control values the total cysteine concentrations were almost invariably lower. The possible consequences of this on glutathione synthesis was explored by assay of plasma total glutathione but no evidence for glutathione deficiency was found. Measurement of total cysteine, rather than free cystine, provides a better indication of cysteine status in HCU. Received February 1, 2001 Accepted November 13, 2001  相似文献   

15.
Blood glutathione oxidation during human exercise   总被引:4,自引:0,他引:4  
To examine the effects of increased O2 utilization on the glutathione antioxidant system in blood, eight moderately trained male volunteers were exercised to peak O2 consumption (VO2peak) and for 90 min at 65% of VO2peak on a cycle ergometer. Blood samples were taken during exercise, and for up to 4 days of recovery from submaximal exercise. During exercise to VO2peak, blood reduced glutathione (GSH) and total glutathione [GSH + oxidized glutathione (GSSG)] did not change significantly. Lactate (L), pyruvate (P), and L/P increased significantly from rest values (P less than 0.01). During prolonged submaximal exercise, GSH decreased 60% from control, and GSSG increased 100%. Total glutathione, glucose, pyruvate, and lactate concentrations and L/P did not change significantly during sustained exercise. During recovery, GSH and GSH/GSSG increased from exercise levels and significantly overshot preexercise levels, reaching maximum values after 3 days. Oxidation of GSH during submaximal exercise and its reduction in recovery suggest increased formation of active O2-. species in blood during physical exercise in moderately trained males.  相似文献   

16.
Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.  相似文献   

17.
Redox state of glutathione in human plasma   总被引:5,自引:0,他引:5  
Thiol and disulfide forms of glutathione (GSH) and cysteine (Cys) were measured in plasma from 24 healthy individuals aged 25-35 and redox potential values (E(h)) for thiol/disulfide couples were calculated using the Nernst equation. Although the concentration of GSH (2.8 +/- 0.9 microM) was much greater than that of GSSG (0.14 +/- 0.04 microM), the redox potential of the GSSG/2GSH pool (-137 +/- 9 mV) was considerably more oxidized than values for tissues and cultured cells (-185 to -258 mV). This indicates that a rapid oxidation of GSH occurs upon release into plasma. The difference in values between individuals was remarkably small, suggesting that the rates of reduction and oxidation in the plasma are closely balanced to maintain this redox potential. The redox potential for the Cys and cystine (CySS) pool (-80 +/- 9 mV) was 57 mV more oxidized, showing that the GSSG/2GSH and the CySS/2Cys pools are not in redox equilibrium in the plasma. Potentials for thiol/disulfide couples involving CysGly were intermediate between the values for these couples. Regression analyses showed that the redox potentials for the different thiol/disulfide couples within individuals were correlated, with the E(h) for CySS-mono-Gly/(Cys. CysGly) providing the best correlation with other low molecular weight pools as well as protein disulfides of GSH, CysGly and Cys. These results suggest that E(h) values for GSSG/2GSH and CySS-mono-Gly/(Cys. CysGly) may provide useful means to quantitatively express the oxidant/antioxidant balance in clinical and epidemiologic studies.  相似文献   

18.
Both deficient and normal blood levels of glutathione (GSH) and cysteine (Cys) have been reported in HIV patients, a discrepancy that has been attributed to different methodologies. The goal of this study was to apply our analytical method to this problem. Blood samples from HIV patients and healthy subjects were collected, immediately stabilized, and quantified using high performance liquid chromatography with dual electrochemical detection. The results showed that the erythrocytic GSH levels were the same in healthy subjects and in HIV patients regardless of their CD4 lymphocyte level. Only those with the lowest CD4 level plus opportunistic infections had supranormal [corrected] GSH concentrations (P < 0.001). GSH plus glutathione disulfide (GSSG) levels also were normal in patients. However, the Cys contents were higher in patients than in controls (P < 0.05). These findings demonstrated that HIV patients have normal erythrocytic GSH concentrations and supranormal Cys levels.  相似文献   

19.
Sulfur amino acids [cysteine (Cys) and methionine (Met)] play two major roles during animal development: protein synthesis for growth and glutathione synthesis for defense. For caterpillars, the levels of sulfur amino acids found in foliar protein can be especially low relative to their nutritional needs. Previous work has measured concentrations of glutathione (GSH; containing Cys) in specific animal tissues, but has not examined whole‐body levels to ascertain the costliness of this defense in terms of Cys allocation. This study examined whether the production of GSH varies between species and within individuals in accordance with an insect's need for antioxidant defense. Secondly, we quantified the allocation of total Cys (peptide‐bound plus free Cys) to GSH in caterpillars as an estimate of its cost. Two contrasting species were compared: Lymantria dispar (Lymantriidae), a species that is highly defended, and Malacosoma disstria (Lasiocampidae), a species that is less defended. As expected, GSH levels were significantly higher in L. dispar than in M. disstria. Consistent with the function of the midgut as a first line of defense against ingested toxins, GSH levels were significantly higher in these tissues than in the whole bodies of both species. A major finding in this study was that a large fraction of total Cys is used to produce GSH: GSH in the midguts of L. dispar and M. disstria contained 23 and 21%, respectively, of the total Cys in these tissues, and the GSH in their remaining body tissues contained 19 and 17% of the total Cys in these tissues. Levels of total Cys in caterpillar tissues followed the same pattern of distribution as did GSH, producing a strong association between GSH and total Cys (R2 = 0.794). We conclude that GSH is a costly defense, especially in generalist tree‐feeding species such as L. dispar. These results further suggest that the large allocation of Cys to GSH in highly defended species might produce a tradeoff by limiting the amount of Cys available for rapid growth.  相似文献   

20.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号