首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naïve anti-viral CD8+ T cells (TCD8+) are activated by the presence of peptide-MHC Class I complexes (pMHC-I) on the surface of professional antigen presenting cells (pAPC). Increasing the number of pMHC-I in vivo can increase the number of responding TCD8+. Antigen can be presented directly or indirectly (cross presentation) from virus-infected and uninfected cells, respectively. Here we determined the relative importance of these two antigen presenting pathways in mousepox, a natural disease of the mouse caused by the poxvirus, ectromelia (ECTV). We demonstrated that ECTV infected several pAPC types (macrophages, B cells, and dendritic cells (DC), including DC subsets), which directly presented pMHC-I to naïve TCD8+ with similar efficiencies in vitro. We also provided evidence that these same cell-types presented antigen in vivo, as they form contacts with antigen-specific TCD8+. Importantly, the number of pMHC-I on infected pAPC (direct presentation) vastly outnumbered those on uninfected cells (cross presentation), where presentation only occurred in a specialized subset of DC. In addition, prior maturation of DC failed to enhance antigen presentation, but markedly inhibited ECTV infection of DC. These results suggest that direct antigen presentation is the dominant pathway in mice during mousepox. In a broader context, these findings indicate that if a virus infects a pAPC then the presentation by that cell is likely to dominate over cross presentation as the most effective mode of generating large quantities of pMHC-I is on the surface of pAPC that endogenously express antigens. Recent trends in vaccine design have focused upon the introduction of exogenous antigens into the MHC Class I processing pathway (cross presentation) in specific pAPC populations. However, use of a pantropic viral vector that targets pAPC to express antigen endogenously likely represents a more effective vaccine strategy than the targeting of exogenous antigen to a limiting pAPC subpopulation.  相似文献   

2.
Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines.  相似文献   

3.
The ability to isolate homogeneous populations of antiviral T lymphocytes from immune mice has led to insight into a variety of areas in cellular immunology. It has permitted the characterization of the distinct pathways of antigen processing and presentation to CD8+, Class I MHC-restricted and CD4+, Class II MHC-restricted cytolytic T lymphocytes as well as the identification of antigenic epitopes for T lymphocytes. In addition,in vivoeffector function of CD8+and CD4+cytolytic T-cell clones in protection from lethal viral pneumonia in a murine model of influenza virus infection has been demonstrated. Since the identification of CD4+T-lymphocyte helper subsets based on the lymphokine profiles of clonal populations, much interest has been focused on the role of specific cytokines in ultimately determining the effector functions of those cells. The protocol presented in this paper has been used to isolate Th1 and Th2 clones in a viral infectious disease model that has enabled us to further investigate the role of specific cytokines in controlling viral infection.  相似文献   

4.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

5.
The presentation of protein Ag with MHC class II proteins involves the uptake of the protein Ag by endocytosis followed by processing, probably proteolysis, in an intracellular acidic compartment. However, there remains considerable controversy as to the precise route taken by the antigen and the MHC class II protein during this process. The unusual stability of Ag-MHC class II protein complexes has led to speculation that antigen can only associate with newly synthesized MHC class II molecules. An alternate possibility is that the MHC class II binding site can be regenerated within the cell during internalization and recycling of MHC class II proteins. To address these possibilities, three different murine B lymphoma lines were tested for their ability to process and present native protein Ag in the presence of the protein synthesis inhibitor cycloheximide or the protein synthesis inhibitor cycloheximide or the protein export inhibitor, Brefeldin A. Both agents blocked the presentation of native OVA or native hen egg lysozyme to Ag-specific T cell hybridomas. No effect was seen on peptide presentation or on presentation to allo- or autoreactive T cells. Inasmuch as Brefeldin A has been previously shown to block protein export without affecting protein internalization or protein degradation in the endocytic pathway, the simplest interpretation of these data is that antigenic fragments generated in the APC after uptake by the endocytic pathway, preferentially associate with newly synthesized rather than mature MHC class II proteins.  相似文献   

6.
An optimized design of the rabies virus glycoprotein (G protein) for use within DNA vaccines has been suggested. The design represents a territorially adapted antigen constructed taking into account glycoprotein amino acid sequences of the rabies viruses registered in the Russian Federation and the vaccine Vnukovo-32 strain. Based on the created consensus amino acid sequence, the nucleotide codon-optimized sequence of this modified glycoprotein was obtained and cloned into the pVAX1 plasmid (a vector of the last generation used in the creation of DNA vaccines). A twofold increase in this gene expression compared to the expression of the Vnukovo-32 strain viral glycoprotein gene in a similar vector was registered in the transfected cell culture. It has been demonstrated that the accumulation of modified G protein exceeds the number of the control protein synthesized using the plasmid with the Vnukovo-32 strain viral glycoprotein gene by 20 times. Thus, the obtained modified rabies virus glycoprotein can be considered to be a promising DNA vaccine antigen.  相似文献   

7.
A mathematical model describing the time-dependent events of antigen processing and presentation is utilized to quantitatively analyze the importance of newly synthesized Ia molecules as well as Ia molecules internalized from the cell surface in the formation of Ia-antigen complexes, the T cell receptor ligand. It has recently been shown that antigen presenting cells are not selective for the proteins they process and present. Therefore, we also investigate the ability of macrophages and B cells to process and present antigen in the presence of competing proteins often present in the extracellular environment. A set of criteria is formulated based upon experimental data to determine the validity of two model variations. We draw two major conclusions from our simulations. First, we determine that macrophages and B cells can present between 1-3 Ia-antigen complexes micron-2 for antigen concentrations in the range of 4-7 microM while in the presence of approximately 0-10 microM competing proteins or peptides. Second, we find it likely that antigen presenting cells, both B cells and macrophages, need to internalize Ia molecules from the cell surface in order for a sufficient number of Ia-antigen complexes to be presented. Binding of antigen to newly synthesized Ia alone does not, given experimentally reported values for Ia synthesis, allow sufficient Ia-antigen complex formation.  相似文献   

8.
Interest in the cell biology of antigen presentation is centered on dendritic cells (DCs) as initiators of the immune response. The ability to examine primary antigen-presenting cells, as opposed to cell lines, has opened a new window for study of antigen processing and peptide acquisition by Class II major histocompatibility complex (MHC) products, especially where intracellular trafficking of peptide-Class-II complexes is concerned. Here, we review the dynamics of Class II MHC-positive intracellular structures in dendritic cells as well as B cells. We focus on the generation of multivesicular bodies, where Class II MHC products acquire antigenic peptide, on the endosomal transport of peptide-loaded Class II MHC to the cell surface and on the importance of Class II MHC localization in membrane microdomains.  相似文献   

9.
《Autophagy》2013,9(7):1026-1029
Complex membrane trafficking events are involved in the regulation of antigen processing and presentation of both endogenous and exogenous antigens. While these processes were believed to involve mainly organelles along the endo/phagocytic and the biosynthetic pathways, recent studies have shown that autophagy also participates actively in both innate and adaptive immunity. We have shown recently that, in macrophages infected with the Herpes simplex type 1 virus, autophagy plays a key role in the targeting of viral proteins to hydrolytic compartments, and their processing for presentation on MHC class I molecules. This pathway involves a novel type of autophagosomes formed by coiling of the nuclear membrane where viral proteins are highly enriched. The ability to enhance the contribution of autophagy to antigen presentation in various conditions suggests that this pathway could be used to boost the immune response against viral infection and develop new vaccines.  相似文献   

10.
We have used bee venom phospholipase A2 as a vector to load human dendritic cells ex vivo with a major histocompatibility complex (MHC) class I-restricted epitope fused to its C-terminus. The fusion protein bound to human monocyte-derived dendritic cells and was internalized into early endosomes. In vitro immunization experiments showed that these dendritic cells were able to generate specific CD8 T cell lines against the epitope carried by the fusion protein. Cross-presentation did not require proteasome, transporter associated with antigen processing, or endosome proteases, but required newly synthesized MHC molecules. Comparison of the antigen presentation pathway observed in this study to that followed by other toxins used as vectors is discussed.  相似文献   

11.
The complete annotation of the cattle genome allows reliable protein identification by tandem mass spectrometry (MS(2)) and greatly facilitates proteomics. Previously, we reported that differential detergent fractionation (DDF) analysis of bovine monocytes reveals proteins related to antigen pattern recognition, uptake and presentation to immunocompetent lymphocytes. Here we have identified 47 bovine proteins, involved in immune function of professional antigen-presenting cells (APC) that have been significantly altered after cytopathic (cp) Bovine Viral Diarrhea Virus (BVDV) infection. In particular, proteins related to immune responses such as cell adhesion, apoptosis, antigen uptake, processing and presentation, acute phase response proteins, MHC class I- and II-related proteins and other molecules involved in immune function of professional antigen presentation have been significantly altered after BVDV infection. Our data suggest that cp BVDV, while promoting monocyte activation and differentiation, is inhibiting their antigen presentation to immunocompetent T cells, thus resulting in the uncontrolled inflammation mediated by activated macrophages, enhanced viral spread, and impaired anti-viral defense mechanisms in the host.  相似文献   

12.
13.
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.  相似文献   

14.
We studied the mechanisms of antigen presentation of CD4 T cell epitopes of the capsular Caf1 antigen of Yersinia pestis using murine bone marrow macrophages as antigen presenting cells and T cell hybridomas specific for major histocompatibility complex (MHC) class II-restricted epitopes distributed throughout the Caf1 sequence. The data revealed diversity in the pathways used and the degrees of antigen processing required depending on the structural context of epitopes within the Caf1 molecule. Two epitopes in the carboxyl-terminal globular domain were presented by newly synthesized MHC class II after low pH-dependent lysosomal processing, whereas an epitope located in a flexible amino-terminal strand was presented by mature MHC class II independent of low pH and with no detectable requirement for proteolytic processing. A fourth epitope located between the two regions of Caf1 showed intermediate behavior. The data are consistent with progressive unfolding and cleavage of rCaf1 from the amino terminus as it traverses the endosomal pathway, the availability of epitopes determining which pool of MHC class II is preferentially loaded. The Caf1 capsular protein is a component of second generation plague vaccines and an understanding of the mechanisms and pathways of MHC class II-restricted presentation of multiple epitopes from this candidate vaccine antigen should inform the choice of delivery systems and adjuvants that target vaccines successfully to appropriate intracellular locations to induce protective immune responses against as wide a T cell repertoire as possible.  相似文献   

15.
Class II MHC proteins bind peptides and present them to CD4 (+) T cells as part of the immune system's surveillance of bodily tissues for foreign and pathogenic material. Antigen processing and presentation pathways have been characterized in detail in normal cells, but there is little known about the actual viral peptides that are presented to CD4 (+) T cells that signal infection. In this study, two-dimensional LC-MS/MS was used to identify vaccinia virus-derived peptides among the hundreds to thousands of peptide antigens bound to the human class II MHC protein HLA-DR1 on the surface of vaccinia virus-infected cells. The peptides, derived from the I6L, D6R, and A10L viral proteins, were 15 residues in length, bound efficiently to HLA-DR1 as synthetic peptides, and were recognized by vaccinia-specific CD4 (+) T cells obtained from an immunized donor.  相似文献   

16.
This paper documents the effects of brefeldin A (BFA) on the processing and transport of viral envelope glycoproteins in a retrovirus-transformed murine erythroleukemia (MEL) cell line. BFA is a fungal metabolite that disrupts intracellular membrane traffic at the endoplasmic reticulum (ER)-Golgi complex junction. In MEL cells, BFA inhibited the processing of the newly synthesized precursor, gPr90env, of the murine leukemia virus envelope protein, gp70, and curtailed the budding of virions into the culture medium by blocking the transport of this protein out of the ER. The block resulted in the intracellular accumulation of gPr90env and two putative products of its processing (78 and 66 kDa). The results of endoglycosidase (endo) H and D digestion of the viral glycoproteins in the presence and absence of BFA indicated that (i) there was no glycoprotein processing during the first approximately 2 h of the BFA block; (ii) active Golgi enzymes relocated to the ER in approximately 2 h during BFA treatment, resulting in the production of partially endo H-resistant forms of the spleen focus-forming virus glycoprotein, gp55 (in controls, this glycoprotein was generally retained in the ER as an endo H-sensitive entity); and (iii) proteolytic processing of gPr90env to gp70 occurred prior to the acquisition of endo H resistance and at approximately the same time as endo D sensitivity (i.e. in a cis Golgi compartment). In control cells, the spleen focus-forming virus glycoprotein, gp55, underwent turnover with a half-life of approximately 5 h. In contrast, its turnover was considerably slower during BFA treatment (t 1/2 = approximately 20 h), suggesting that transport of gp55 out of the ER was required for its degradation or that BFA afforded it protection from proteolysis within the ER.  相似文献   

17.
The regulation of antigen processing and presentation to MHC class I-restricted cytolytic T lymphocytes was studied in cells infected with murine cytomegalovirus. Recognition by cytolytic T lymphocytes of the phosphoprotein pp89, the immunodominant viral antigen expressed in the immediate-early phase of infection, was selectively prevented during the subsequent expression of viral early genes. The surface expression of MHC class I glycoproteins and their capacity to present externally added pp89-derived antigenic peptides were not affected. Because recognition of several other antigens occurred during the early phase, a general failure in processing and presentation was excluded. Since neither rate of synthesis, amount, stability, nor nuclear transport of pp89 was modified, the failure in recognition indicates a selective interference with pp89 antigen processing and presentation.  相似文献   

18.
While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2) challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune responses, and the addition of an ubiquitin-encoding sequence to target the antigen to the proteasome for processing and to enhance cytotoxic T cell responses. We show that a mixture of these codon-optimized ubiquitinated and non-ubiquitinated constructs encoding the same viral envelope protein, glycoprotein D, induced both B and T cell responses, and could protect against lethal viral challenge and reduce ganglionic latency. The optimized vaccines, subcloned into a vector suitable for use in humans, also provided a high level of protection against the establishment of ganglionic latency, an important correlate of HSV reactivation and candidate endpoint for vaccines to proceed to clinical trials.  相似文献   

19.
The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in six Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development.  相似文献   

20.
The soluble glycoprotein Gs of vesicular stomatitis virus (VSV), at approximately 10(4) molecules per cell, sensitized target cells for lysis by clones of CD4+ cytolytic T lymphocytes (CTL). In addition to lysis, the clones responded by proliferation and interleukin-2 release. Targets sensitized by Gs competed effectively with VSV-infected cells for recognition. Immune cytolysis by these CD4+ CTLs was restricted by class II major histocompatibility complex (MHC) antigens and was specific to VSV. The specific class II MHC antigen which was restricting for each clone remained the same whether the targets were sensitized by infection with VSV or by exogenously added soluble antigen. Sensitization by Gs appeared to require prior processing because the antigen-presenting cells that were fixed prior to exposure to Gs failed to be recognized by the CTL clones. The high efficiency of this uptake and processing was suggested by the inability of Gs at concentrations up to 10(7) per cell to block superinfection by VSV or to effect the RNA-synthetic machinery of uninfected cells. Also, Gs failed to hemolyze sheep erythrocytes when there was hemolysis by virions or an amino-terminal peptide of the VSV glycoprotein. Extrapolation of these results to viral diseases was possible because soluble viral glycoproteins were naturally synthesized during many viral infections and class II MHC antigens were inducible in cells of nonlymphoid origin. Therefore, CD4+ CTLs may be important participants in increasing virus-induced pathology, especially among adjacent uninfected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号