首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing.   总被引:48,自引:10,他引:38       下载免费PDF全文
R Savino  S A Gerbi 《The EMBO journal》1990,9(7):2299-2308
DNA oligonucleotide complementary to sequences in the 5' third of U3 snRNA were injected into Xenopus oocyte nuclei to disrupt endogenous U3 snRNA. The effect of this treatment on rRNA processing was examined. We found that some toads have a single rRNA processing pathway, whereas in other toads, two rRNA processing pathways can coexist in a single oocyte. U3 snRNA disruption in toads with the single rRNA processing pathway caused a reduction in 20S and '32S' pre-rRNA. In addition, in toads with two rRNA processing pathways, an increase in '36S' pre-rRNA of the second pathway is observed. This is the first in vivo demonstration that U3 snRNA plays a role in rRNA processing. Cleavage site #3 is at the boundary of ITS 1 and 5.8S and links all of the affected rRNA intermediates: 20S and '32S' are the products of site #3 cleavage in the first pathway and '36S' is the substrate for cleavage at site #3 in the second pathway. We postulate that U3 snRNP folds pre-rRNA into a conformation dictating correct cleavage at processing site #3.  相似文献   

2.
The first cleavage in mammalian pre-rRNA processing occurs within the 5' external transcribed spacer (ETS). We have recently shown that the U3 snRNP is required for this cleavage reaction, binds to the rRNA precursor, and remains complexed with the downstream processing product after the reaction has been completed (1). Using psoralen crosslinking in mouse cell extract we have detected a new interaction between U3 RNA and the mouse ETS processing substrate and its processed product. The crosslinked sites on both U3 and ETS RNAs have been mapped by RNase H cleavage and primer extension analyses. The crosslinked sites in U3 RNA map to C5, U6, and U8. U8 lies within and C5 and U6 are adjacent to an evolutionarily conserved U3 sequence termed box A'. In the ETS the crosslinked sites are U1012 and U1013, 362 nucleotides downstream from the processing site. Although the crosslinked site is dispensable for the primary processing reaction in vitro, a short conserved sequence just 3' to the cleavage site (nucleotides 650-668) is absolutely required for crosslink formation. We conclude that the interaction between U3 RNA and the 5' ETS detected by psoralen crosslinking may play a role in subsequent step(s) of pre-rRNA processing.  相似文献   

3.
The sequences and structural features of Xenopus laevis U3 small nucleolar RNA (snoRNA) necessary for pre-rRNA cleavage at sites 1 and 2 to form 18 S rRNA were assayed by depletion/rescue experiments in Xenopus oocytes. Mutagenesis results demonstrated that the putative stem of U3 domain I is unnecessary for 18 S rRNA processing. A model consistent with earlier experimental data is proposed for the structure of domain I when U3 is not yet bound to pre-rRNA. For its function in rRNA processing, a newly discovered element (5' hinge) was revealed to be important but not as critical as the 3' hinge region in Xenopus U3 snoRNA for 18 S rRNA formation. Base-pairing is proposed to occur between the U3 5' hinge and 3' hinge and complementary regions in the external transcribed spacer (ETS); these interactions are phylogenetically conserved, and are homologous to those previously described in yeast (5' hinge-ETS) and trypanosomes (3' hinge-ETS). A model is presented where the base-pairing of the 5' hinge and 3' hinge of U3 snoRNA with the ETS of pre-rRNA helps to correctly position U3 boxes A'+A for their function in rRNA processing. Like an earlier proposal for yeast, boxes A' and A of Xenopus may base-pair with 18 S sequences in pre-rRNA. We present the first direct experimental evidence in any system that box A' is essential for U3 snoRNA function in 18 S rRNA formation. The analysis of insertions and deletions indicated that the spacing between the U3 elements is important, suggesting that they base-pair with the ETS and 18 S regions of pre-rRNA at the same time.  相似文献   

4.
The U18 small nuclear RNA (snRNA) is one of several newly discovered intron-encoded nucleolar RNAs whose function is unknown. We have studied the accumulation and function of the U18 snRNA in oocytes of the vertebrate, Xenopus laevis. The U18 snRNA contains 13 nt complementary to a highly conserved sequence in 28S ribosomal RNA (rRNA). Three oligonucleotides, selected to contain all or some of the complementary sequence, deplete the U18 snRNA upon injection into Xenopus oocytes. Injection of two of the oligonucleotides has no effect on pre-rRNA processing or ribosome transport. Injection of the third oligonucleotide does interrupt pre-18S rRNA processing, but this is due to coincidental simultaneous depletion of the U22 snRNA. The U18 snRNA is the first nucleolar snRNA that is not essential for ribosome biogenesis in vertebrates.  相似文献   

5.
A processing site has been identified within the 5' external transcribed spacer (ETS) of Xenopus laevis and X. borealis pre-RNAs, and this in vivo processing can be reproduced in vitro. It involves a stable and specific association of the pre-rRNA with factors in the cell extract, including at least four RNA-contacting polypeptides, yielding a distinct complex that sediments at 20S. Processing also requires the U3 small nuclear RNA. This processing, at residue +105 of the 713-nucleotide X. laevis 5' ETS, is highly reminiscent of the initial processing cleavage of mouse pre-rRNA within its 3.5-kb 5' ETS, previously thought to be mammal specific. The frog and mouse processing signals share a short essential sequence motif, and mouse factors can faithfully process the frog pre-rRNA. This conservation suggests that this 5' ETS processing site serves an evolutionarily selective function.  相似文献   

6.
7.
It has long been known that U3 can be isolated hydrogen bonded to pre-ribosomal RNAs, but the sites of interaction are poorly characterized. Here we show that yeast U3 can be cross-linked to 35S pre-rRNA both in deproteinized extracts and in living cells. The sites of cross-linking were localized to the 5' external transcribed spacer (ETS) and then identified at the nucleotide level. Two regions of U3 near the 5' end are cross-linked to pre-rRNA in vivo and in vitro; the evolutionarily conserved box A region and a 10 nucleotide (nt) sequence with perfect complementarity to an ETS sequence. Two in vivo cross-links are detected in the ETS, at +470, within the region complementary to U3, and at +655, close to the cleavage site at the 5' end of 18S rRNA. A tagged rDNA construct was used to follow the effects of mutations in the ETS in vivo. A small deletion around the +470 cross-linking site in the ETS prevents the synthesis of 18S rRNA. This region is homologous to the site of vertebrate ETS cleavage. We propose that this site may be evolutionarily conserved to direct the assembly of a pre-rRNA processing complex required for the cleavages that generate 18S rRNA.  相似文献   

8.
We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.  相似文献   

9.
Mutations in the 5' portion of Xenopus U3 snoRNA were tested for function in oocytes. The results revealed a new cleavage site (A0) in the 3' region of vertebrate external transcribed spacer sequences. In addition, U3 mutagenesis uncoupled cleavage at sites 1 and 2, flanking the 5' and 3' ends of 18S rRNA, and generated novel intermediates: 19S and 18.5S pre-rRNAs. Furthermore, specific nucleotides in Xenopus U3 snoRNA that are required for cleavages in pre-rRNA were identified: box A is essential for site A0 cleavage, the GAC-box A' region is necessary for site 1 cleavage, and the 3' end of box A' and flanking nucleotides are required for site 2 cleavage. Differences between metazoan and yeast U3 snoRNA-mediated rRNA processing are enumerated. The data support a model where metazoan U3 snoRNA acts as a bridge to draw together the 5' and 3' ends of the 18S rRNA coding region within pre-rRNA to coordinate their cleavage.  相似文献   

10.
The loop of a stem structure close to the 5' end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A(1), the 5' end of the 18S rRNA, and at site A(2), located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3-pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5' external transcribed spacer (5' ETS). Cleavage at site A(0) in the yeast 5' ETS strictly requires base pairing between U3 and a sequence within the 5' ETS. In contrast, the U3-18S interaction is not required for A(0) cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A(1) cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A(1) cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing.  相似文献   

11.
12.
Full-length precursor ribosomal RNA molecules were produced in vitro using as a template, a plasmid containing the yeast 35 S pre-rRNA gene under the control of the phage T3 promoter. The higher-order structure of the 5'-external transcribed spacer (5' ETS) sequence in the 35S pre-rRNA molecule was studied using dimethylsulfate, 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate, RNase T1 and RNase V1 as structure-sensitive probes. Modified residues were detected by primer extension. Data produced were used to evaluate several theoretical structure models predicted by minimum free-energy calculations. A model for the entire 5'ETS region is proposed that accommodates 82% of the residues experimentally shown to be in either base-paired or single-stranded structure in the correct configuration. The model contains a high degree of secondary structure with ten stable hairpins of varying lengths and stabilities. The hairpins are composed of the Watson-Crick A.T and G.C pairs plus the non-canonical G.U pairs. Based on a comparative analysis of the 5' ETS sequence from Saccharomyces cerevisiae and Schizosaccharomyces pombe, most of the base-paired regions in the proposed model appear to be phylogenetically supported. The two sites previously shown to be crosslinked to U3 snRNA as well as the previously proposed recognition site for processing and one of the early processing site (based on sequence homology to the vertebrate ETS cleavage site) are located in single-stranded regions in the model. The present folding model for the 5' ETS in the 35 S pre-rRNA molecule should be useful in the investigations of the structure, function and processing of pre-rRNA.  相似文献   

13.
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.  相似文献   

14.
Ribosome biogenesis in eucaryotes involves many small nucleolar ribonucleoprotein particles (snoRNP), a few of which are essential for processing pre-rRNA. Previously, U8 snoRNA was shown to play a critical role in pre-rRNA processing, being essential for accumulation of mature 28S and 5.8S rRNAs. Here, evidence which identifies a functional site of interaction on the U8 RNA is presented. RNAs with mutations, insertions, or deletions within the 5'-most 15 nucleotides of U8 do not function in pre-rRNA processing. In vivo competitions in Xenopus oocytes with 2'O-methyl oligoribonucleotides have confirmed this region as a functional site of a base-pairing interaction. Cross-species hybrid molecules of U8 RNA show that this region of the U8 snoRNP is necessary for processing of pre-rRNA but not sufficient to direct efficient cleavage of the pre-rRNA substrate; the structure or proteins comprising, or recruited by, the U8 snoRNP modulate the efficiency of cleavage. Intriguingly, these 15 nucleotides have the potential to base pair with the 5' end of 28S rRNA in a region where, in the mature ribosome, the 5' end of 28S interacts with the 3' end of 5.8S. The 28S-5.8S interaction is evolutionarily conserved and critical for pre-rRNA processing in Xenopus laevis. Taken together these data strongly suggest that the 5' end of U8 RNA has the potential to bind pre-rRNA and in so doing, may regulate or alter the pre-rRNA folding pathway. The rest of the U8 particle may then facilitate cleavage or recruitment of other factors which are essential for pre-rRNA processing.  相似文献   

15.
The small nucleolar RNA U3 is essential for viability in yeast. We have previously shown that U3 can be cross-linked in vivo to the pre-rRNA in the 5' external transcribed spacer (ETS), at +470. This ETS region contains 10 nucleotides of perfect complementarity to U3. In a genetic background where the mutated rDNA is the only transcribed rDNA repeat, the deletion of the 10 nt complementary to U3 is lethal. Cells lacking the U3 complementary sequence in pre-rRNA fail to accumulate 18S rRNA: pre-rRNA processing is inhibited at sites A0 in the 5' ETS, A1 at the 5' end of 18S rRNA and A2 in ITS1. We show here that effects on processing at site A0 are specific for U3 and its associated proteins and are not seen on depletion of other snoRNP components. The deletion of the sequence complementary to U3 in the ETS therefore mimics all the known effects of the depletion of U3 in trans. This indicates that we have identified an essential U3 binding site on pre-rRNA, required in cis for the maturation of 18S rRNA.  相似文献   

16.
Recognition signals for mouse pre-rRNA processing   总被引:17,自引:0,他引:17  
In order to identify signals for rRNA processing in eukaryotes, mouse pre-rRNA sequence features around four cleavage sites have been analyzed. No consensus sequence can be recognized when the four boundary regions are examined. Unlike mature rRNA termini, distal sequences of precursor-specific domains cannot participate in stable duplex with adjacent regions. The extensive divergence of precursor-specific sequences during evolution also applies to nucleotides adjacent to cleavage sites, with a significant exception for a conserved segment immediately downstream 5.8S rRNA. A specific role is proposed for U3 nucleolar RNA in the conversion of 32S pre-rRNA into mature 28S rRNA, through base-pairing with precursor-specific sequences at the boundaries of excised domains.  相似文献   

17.
The small nucleolar RNA U3 is essential for viability in yeast. We have previously shown that U3 can be cross-linked in vivo to the pre-rRNA in the 5' external transcribed spacer (ETS), at +470. This ETS region contains 10 nucleotides of perfect complementarity to U3. In a genetic background where the mutated rDNA is the only transcribed rDNA repeat, the deletion of the 10 nt complementary to U3 is lethal. Cells lacking the U3 complementary sequence in pre-rRNA fail to accumulate 18S rRNA: pre-rRNA processing is inhibited at sites A0 in the 5' ETS, A1 at the 5' end of 18S rRNA and A2 in ITS1. We show here that effects on processing at site A0 are specific for U3 and its associated proteins and are not seen on depletion of other snoRNP components. The deletion of the sequence complementary to U3 in the ETS therefore mimics all the known effects of the depletion of U3 in trans. This indicates that we have identified an essential U3 binding site on pre-rRNA, required in cis for the maturation of 18S rRNA.  相似文献   

18.
Nucleolin functions in the first step of ribosomal RNA processing.   总被引:24,自引:1,他引:23       下载免费PDF全文
H Ginisty  F Amalric    P Bouvet 《The EMBO journal》1998,17(5):1476-1486
The first processing step of precursor ribosomal RNA (pre-rRNA) involves a cleavage within the 5' external transcribed spacer. This processing requires sequences downstream of the cleavage site which are perfectly conserved among human, mouse and Xenopus and also several small nucleolar RNAs (snoRNAs): U3, U14, U17 and E3. In this study, we show that nucleolin, one of the major RNA-binding proteins of the nucleolus, is involved in the early cleavage of pre-rRNA. Nucleolin interacts with the pre-rRNA substrate, and we demonstrate that this interaction is required for the processing reaction in vitro. Furthermore, we show that nucleolin interacts with the U3 snoRNP. Increased levels of nucleolin, in the presence of the U3 snoRNA, activate the processing activity of a S100 cell extract. Our results suggest that the interaction of nucleolin with the pre-rRNA substrate might be a limiting step in the primary processing reaction. Nucleolin is the first identified metazoan proteinaceous factor that interacts directly with the rRNA substrate and that is required for the processing reaction. Potential roles for nucleolin in the primary processing reaction and in ribosome biogenesis are discussed.  相似文献   

19.
U3 small nucleolar RNA (snoRNA) is essential for rRNA processing to form 18S ribosomal RNA (rRNA). Previously, it has been shown that nucleolin is needed to load U3 snoRNA on pre-rRNA. However, as documented here, this is not sufficient. We present data that base-pairing between the U3 hinges and the external transcribed spacer (ETS) is critical for functional alignment of U3 on its pre-rRNA substrate. Additionally, the interaction between the U3 hinges and the ETS is proposed to serve as an anchor to hold U3 on the pre-rRNA substrate, while box A at the 5' end of U3 snoRNA swivels from ETS contacts to 18S rRNA contacts. Compensatory base changes revealed base-pairing between the 3' hinge of U3 snoRNA and region E1 of the ETS in Xenopus pre-rRNA; this novel interaction is required for 18S rRNA production. In contrast, base-pairing between the 5' hinge of U3 snoRNA and region E2 of the ETS is auxiliary, unlike the case in yeast where it is required. Thus, higher and lower eukaryotes use different interactions for functional association of U3 with pre-rRNA. The U3 hinge sequence varies between species, but covariation in the ETS retains complementarity. This species-specific U3-pre-rRNA interaction offers a potential target for a new class of antibiotics to prevent ribosome biogenesis in eukaryotic pathogens.  相似文献   

20.
Esf2p is the Saccharomyces cerevisiae homolog of mouse ABT1, a protein previously identified as a putative partner of the TATA-element binding protein. However, large-scale studies have indicated that Esf2p is primarily localized to the nucleolus and that it physically associates with pre-rRNA processing factors. Here, we show that Esf2p-depleted cells are defective for pre-rRNA processing at the early nucleolar cleavage sites A0 through A2 and consequently are inhibited for 18S rRNA synthesis. Esf2p was stably associated with the 5' external transcribed spacer (ETS) and the box C+D snoRNA U3, as well as additional box C+D snoRNAs and proteins enriched within the small-subunit (SSU) processome/90S preribosomes. Esf2p colocalized on glycerol gradients with 90S preribosomes and slower migrating particles containing 5' ETS fragments. Strikingly, upon Esf2p depletion, chromatin spreads revealed that SSU processome assembly and compaction are inhibited and glycerol gradient analysis showed that U3 remains associated within 90S preribosomes. This suggests that in the absence of proper SSU processome assembly, early pre-rRNA processing is inhibited and U3 is not properly released from the 35S pre-rRNAs. The identification of ABT1 in a large-scale analysis of the human nucleolar proteome indicates that its role may also be conserved in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号