首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The trophodynamics of a coastal plankton community were studied,focusing on fish larvae and their copepod prey. The major objectiveswere to describe distributional overlap and evaluate the predatoryimpact by larval fish. The study was carried out across DoggerBank in the North Sea, August-September 1991. Sampling transectscrossed tidal fronts off the Bank and plankton at all trophiclevels showed peak abundance within frontal zones. Also Verticallythere was a significant overlap in distributional patterns ofthe plankton. Seven species of fish larvae were abundant, ofthese sprat (Sprattus sprattus) dominated. The abundance ofone group of fish larvae peaked in the shallow water close tothe Bank, whereas other species, including sprat, were foundin deeper water. Prey preference and predation pressure of fishlarvae were assessed using information on prey sizes and growthrates of larvae and the copepod prey. We estimated larval removalof preferred prey sizes to 3–4% day–1, counterbalancedby a 3–7% day–1' replenishment from copepod productionand growth. Additional predation pressure on copepods by aninvertebrate predator was estimated to 1–3%day–1.In conclusion, the dynamics of fish larvae and other zooplankterswere closely linked. At peak abundances of fish larvae (>35mg dry weight m–2), the accumulated predation on specificsize ranges of copepods, exerted by larvae and other predators,could exceed the ability of copepod replenishment and intra-/interspecificcompetition among predators might take place.  相似文献   

2.
In May 1994, we investigated the short-term development of theplanktonic community in the epi- and metalimnion of an oligo-mesotrophiclake (Piburger See, Tyrol), focusing on trophic links betweenprotists and picoplankton, but also including phyto- and zooplankton.Uptake experiments with fluorescently labelled bacteria (FLB)and picocyanobacteria (FIC) were performed in order to comparethe importance of both prey types as carbon sources for bacterivorousprotists. Heterotrophic nanoflagellates (HNF) were responsiblefor {small tilde}90% of total protozoan picoplanktivory (FLB+ FLC); ciliates accounted for {small tilde}10%. A selectivityindex related to prey density showed that both HNF and ciliatesclearly preferred FLC over FLB. The mean cell size of autotrophic(prokaryotic) picoplankton (APP) was nearly three times larger(0.323 µm3) and much less variable than mean bacterialcell volume (0.122 µm3). Although APP biomass was on averageonly 8.6% of total picoplankton biomass, pico-cyanobacteriaaccounted for a mean 15.9% of total HNF carbon uptake. We calculatedthat total HNF grazing could match potential APP maximum growthrates at the beginning of the study period. A strong decreasein HNF individual clearance rate (CR) on APP was clearly relatedto a fall in the percentage of choanofiagellates (from 75 to{small tilde}10% of the HNF community). A simultaneous decreasein HNF biomass and CR was followed by a steep increase in APPabundance; APP abundance and HNF biomass were highly negativelycorrelated both in the epi- and the metalimnion (r1 EM = –0.879,r1 META = =0.907; P = 0.001). Total rotifer abundance increasedby a factor of 50 within 2 weeks and was also negatively correlatedwith HNF biomass (r1 EM = –0.852, P < 0.001; r1 META= –0.659, P < 0.05). HNF grazing was found to exerta strong short-term control on picocyanobacteria and this linkwas probably broken by an increase in metazooplankton, especiallydue to rotifer predation on HNF.  相似文献   

3.
The diurnal vertical distribution of a large number of speciesof zooplankton, icbthyoplankton and micronekton were determinedin the top 150 m in three locations in the Shelf Water, on theNova Scotia Shelf, and Slope and on Georges Bank during springand fall periods. Species were categorized as to their trophiclevel and their type of diurnal migration behaviour. The influenceof temperature, salinity, and water density on the diurnal verticaldistribution of the species was examined. Temperature was foundto have the greatest influence on the distribution of the largestnumber of species. Diurnal migration behavior of the same speciesin Shelf and Slope water and at different times of the yearwas examined. Results showed that species changed their behaviorin the two water masses, while some species changed their migrationbehavior at different times of the year. During the night inApril the most abundant copepod species, Calanus finmarchicus,making up about 80% of the biomass, was found concentrated abovethe thermocline and the main chlorophyll layer. The majorityof the less abundant species of copepods were found below thethermocline and the chlorophyll layer. At night in August thetwo most abundant copepod species, Centropoger typicus and Paracalanusparvus, making up at least 80% of the zooplankton biomass, werealso concentrated above the thermocline and the main chlorophyllLayer. Three species of copepods were concentrated at the depthof the main chlorophyll layer and two species were concentratedbelow the chlorophyll layer and thermocline. The vertical distributionof other zooplankton and ichthyoplankton species was examinedin relation to the thermocline and chlorophyll layer. Relationshipsbetween concentrations of six species of fish larvae and allspecies of copepods in the same samples showed a general increasein the numbers of larvae m–3 as the numbers of copepodsm–3 increased in a range of 500–4000 m–3.However, the concentration of Merluccius bilinearis decreasedas the concentration of copepods exceeded 4000 m–3 suggestingthat high concentrations of copepods may not be a favourableenvironment for the larvae.  相似文献   

4.
Zooplankton composition and distribution off the coast of Galicia, Spain   总被引:3,自引:0,他引:3  
During June and September 1984, zooplankton samples were collectedwith other hydrographic and biological data along the Galiciancoast (NW of Spain). In June copepods contributed {small tilde}60%to the total zooplankton community, with larvaceans, siphonophoresand cladocerans also abundant. In September >90% of the zooplanktonsampled were copepods. The dominant species of copepods in bothJune and September were Acartia clausi, Paracalanus parvus andTemora longicornis. The meroplankton was dominated by echinoderms,bryozoans, barnacle larvae and bivalve larvae. In June the averagezooplankton biomass was 31.08 mg C m–3; the Septemberaverage was 41.69 mg C m–3. The relationship between theslopes of the regression equations (biomass versus abundance)suggests that the zooplankton assemblage in June was composedby larger animals than in September. The major concentrationof zooplankton was between 0 and 50 m, with both June and Septemberdaytime surface samples having 6–7 times the amount oforganisms than the lower water column (50–100 m). Therewere no distinct differences in total zooplankton abundancesat the inshore and offshore stations; however, the inshore stationsoften had a higher percentage of meroplankton than the offshorestations. In June zooplankton abundance at the northern transectsand the western transects was similar. In September there weregreater concentrations of zooplankton in the western Galicianshelf as compared with the northern shelf. These differencesin the horizontal distribution of the zooplankton were relatedto upwelling events.  相似文献   

5.
The diel migration patterns of Mesocyclops edax and its preyin a small lake were followed in two studies separated by approximatelyone year. Gut contents of the predators were examined and selectivityindices calculated at each depth at 0100 h during 1980. Thethree principal zooplankton prey found in the guts of M. edaxwere Keratella, Kellicottia, and Bosmina. The predator and allthree major prey species exhibited unique and different dielvertical distribution and migration patterns. The complex natureof the spatio-temporal variation in prey density to which M.edax is exposed, demonstrates the dangers of using selectivityindices without knowledge of the distribution patterns of bothpredator and prey. An increase in vertebrate predation pressurefrom one year to the next is thought to be responsible for anincrease in the abundance of small zooplankton species, thedisappearance of two out of three of the large zooplankton species,and the onset of a pronounced nocturnal migration pattern inthe third large species. 1Present address: Biology Department, Williams Hall #31, LehighUniversity, Bethlehem, PA 18015, USA  相似文献   

6.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

7.
Synopsis In this study we investigate the effect of food availability (zooplankton biomass) on the growth of Odontesthes bonariensis (Atherinidae) larvae. The larvae were stocked in four 45 m2 outdoor tanks at relatively high densities (100 and 200 larvae m–2). Because of the high stocking densities, the zooplankton biomass was depleted in all tanks. However, the patterns of food limitation, and particularly periods of severe food shortage, differed in tanks stocked at different densities. We could therefore, observe the effect of food limitation in larvae that differed in weight and age. The effects of variables suspected to influence O. bonariensis growth rates (age and weight of larvae, available zooplankton biomass, mean individual weight of available preys, total ingested prey weight, and mean weight of ingested preys) were investigated using standard multiple regression methods, and a model assuming: (1) an allometric relationship between maximum growth rates and weight of larvae, and (2) an inverse relationship between growth depression and the available zooplankton biomass. Both methods were consistent in showing that only the weight of larvae, and the availability of zooplankton prey had significant effects on the growth of O. bonariensis. The model's results additionally suggest that, if the observed growth rates are scaled by the maximum growth rate corresponding to the larva weight, the effect of zooplankton biomass is largely independent of age and weight of larvae.  相似文献   

8.
The abundance, biomass and size structure of the scyphomedusa,Aurelia aurita, was measured during two research cruises tothe northwestern Black Sea (July–August 1995 and April–May1997). Average biomass of Aurelia was relatively constant (132–179g wwt m–2) throughout the investigation period and similarto previous years. Abundance and biomass at individual stationsappeared to be unrelated to temperature and salinity when thelatter exceeded ~13. Biomass was low at coastal stations inthe plume of the Danube where depth was <20 m and salinitydropped to <11. The spring cruise (April–May) coincidedwith, or just followed the peak of strobilation. The summercruise (July–August) took place near the beginning ofplanulae larvae release. The population size structure was dominatedby small individuals in spring, while large medusae prevailedmainly in late summer. Aurelia was, on average, larger at deepwater stations during summer, suggesting that per capita foodsupply was higher further offshore. The individual body massincreased from spring through summer. Accordingly, the volume(wet wt) to length (bell diameter) relation changed significantly.If all medusae measured throughout the seasons were pooled,volume (V, in cm3) was related to length (L, in cm) accordingto V = 0.08 L2.71, which is similar to measurements conductedin other coastal areas. In contrast to the common conjecture,we did not find inverse relations between biomasses of Aureliaand the combjelly Mnemiopsis leidyi. Preliminary feeding experimentsindicate that Aurelia may feed upon small Mnemiopsis. The significanceof indirect trophic relations and direct feeding interactionsamong the gelatinous zooplankton in the Black Sea has importantconsequences for the energy flow along the food web and, therefore,needs further study.  相似文献   

9.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

10.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

11.
The trophic relation between prokaryotes and heterotrophic nanoflagellateswas studied during two latitudinal cruises in the central AtlanticOcean. The losses to predation on prokaryotes were determinedin 12 locations covering a wide range of trophic situations,from ultraoligotrophic [<0.05 mg chlorophyll a (Chl a) m–3]to moderately eutrophic waters (>1 mg Chl a m–3). Inthese locations, the abundance of prokaryotes (P) covaries withthat of heterotrophic nanoflagellates, thus suggesting thatresources controlled the abundance of heterotrophic nanoflagellates(HNF). Besides, the losses to predation were positively relatedto prokaryotic and heterotrophic nanoflagellate biomass, whichpoints toward higher consumption rates associated with largerconcentrations of preys and predators. Conversely, decliningtrends between prokaryotic production (PP) and the fractionof this production lost to predation revealed higher relativelosses in the environments with lower productions. Our studyshows for the central Atlantic that 35% of prokaryotic biomass(BP), equating to between 40 and 83% of PP can be ingested dailyand that 55% of the variability observed in the rate of prokaryoticloss to predation was related with the HNF. As predators grazeon many prey types, in an oligotrophic system containing manyprey species but little numeric loading, there will still beprey for predators but not enough hosts for viruses. In thissense, our study confirms the importance of the prey–predatorrelationship between prokaryotes and heterotrophic nanoflagellatesin the flow of carbon of the less productive regions of theocean.  相似文献   

12.
We investigated the potential of acoustic technology for estimatingzooplankton distribution as part of an ongoing study of sockeyesalmon (Oncorhynchus nerka) production in three lakes of theFraser River system, British Columbia. Simultaneous acousticand zooplankton samples were obtained in 1 and 2 m depth incrementsfrom the surface to 30 m at mid-lake stations. We derived asignificant regression relationship (r2=0.71, n=79) betweenzooplankton biomass ranging between 5 and 220 mg m–3 andacoustic backscatter (V2). The ensuing regression model wasused to predict zooplankton biomass distribution from acousticdata collected along transects representing different lake areas.  相似文献   

13.
In a small temperate lake of the southern Andes, Bosmina longirostrisand Ceriodaphnia dubia coexist with the predaceous water miteLimnesia patagonica. Sampling of natural populations and laboratoryexperiments were carried out. The field population of Limnesiadid not show a numerical response to the density or biomassof its prey. Laboratory experiments showed that the water miterejected C.dubia adults and juveniles as prey, but consumedBosmina. The maximum predation rate was 40 prey predator–1day–1 and a linear relationship between predation rateand prey density was obtained (R2 = 66%). The contribution ofmortality due to predation and the predation risk are too lowto provoke a prey suppression. By means of computer modelling,the densities of predator necessary to explain half of the totalprey mortality were calculated. These densities were one ortwo orders of magnitude higher than those in the field. It isconcluded that Limnesia could really be a suppressor, but thepotential depends greatly on its density.  相似文献   

14.
Interannual changes in the biomass of the Black Sea gelatinous zooplankton   总被引:3,自引:0,他引:3  
The 15 year changes in the total gelatinous biomass consistof a general trend to increase, from 250 gm–2 in 1980to 2500 g m–2 in 1995, and fluctuations with a periodof –4 years performed against the background of this trendin the upper 150 m layer. Different species occupying distincttrophic niches form these peaks. When represented as the percentageof the total zooplankton biomass, Aurelia aurita and Mnemiopsisleidyi exhibit the contra-phase fluctuations where a sharp increasein M.leidyi is accompanied by a decrease in the A.aurita biornass.  相似文献   

15.
A series of 4-day manipulations of zooplankton biomass and nutrientavailability was performed in enclosures in three lakes to determinespecies-specific algal responses to herbivory and nutrient enrichment.Algal performance in enclosures was compared to the relationshipsbetween weekly algal growth rates and the zooplankton in situ.When in situ growth rates were significant functions of zooplanktonbiomass, the responses were generally consistent with responsesin the enclosure experiments. The importance of both nutrientsand zooplankton in mediating algal growth was demonstrated bynumerous observations: strong algal community response to enrichment,unimodal or positive responses of certain algal taxa to zooplanktonbiomass, differences in degree of nutrient limitation amongthe algal response types, lack of nutrient limitation of non-grazedalgal taxa and a preponderance of taxa with no net responseto increasing zooplankton biomass. Variation in the zooplanktoncommunity may be the largest source of variability in nutrientsupply rate during summer in stratified lakes, and causes substationalvariability in the algae. Algae responded more strongly to changesin zooplankton composition than to changes in zooplankton biomass.We conclude that, due to the close coupling of phytoplanktonand zooplankton communities in these nutrient-limited lakes,major compositional changes in the zooplankton have greatereffects on the algae than do changes in biomass of grazers alreadypresent. 1Present address: Division of Environmental Studies, Universityof California, Davis, CA 95616, USA 2Present address: Division of Biological Sciences, Universityof California, Davis, CA 95616, USA  相似文献   

16.
The predation potential of littoral mysid shrimps (Mysidacea) on Baltic herring (Clupea harengus membras L.) eggs and yolk-sac larvae was studied experimentally. The results showed that littoral mysids feed actively on both eggs and yolk-sac larvae. It was shown that Neomysis integer preys on eggs, which are not attached to the substrate. Alternative food (yolk-sac larvae or zooplankton) did not decrease feeding rate on eggs. Only gravel as a bottom material lowered the ingestion rate to nearly zero. The largest of the mysid species Praunus flexuosus ate yolk-sac larvae more than other mysids and most efficiently. Mysids switched to feed on eggs when larvae and eggs were offered simultaneously, thus predation focused on eggs. It is possible that hydrodynamic signals of moving larvae induced mysids to prey and eggs were easier prey to catch as well as more numerous. In addition egg size is optimal and the nutritive value (measured as C:N ratio) is better compared with larvae. The results indicate that mysids may have local effects on populations of Baltic herring by eating the early life stages, mostly eggs. Especially when large swarms of N. integer shoal in the spawning areas. However, the effect on recruitment of herring is still hard to evaluate.  相似文献   

17.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

18.
The nutrient, phytoplankton, and zooplankton dynamics in threeenclosed water columns (1300 m3) are described. Two of the enclosureswere mixed using a bubbling chamber at depth. Young chum salmon(Oncorhynchus keta) were added to one of the mixed enclosuresand the unmixed enclosure. No other manipulations were imposed.Copepods appeared in large numbers (e.g. especially Pseudocalanusminutus s.l. and Paracalanus parvus) and population growth rateswere estimated. Ctenophora did not appear in large numbers despitepresumably ideal food environments; it is suggested that inone enclosure this is a consequence of fish predation on thectenophores. The fish experienced high mortalities and low growthrates presumably due to unsuitable prey size. Weekly collectionsof sediment permitted isolation of two major sediment contributors,the first from phytoplankton sinking and the second from biogenkfallout associated with herbivore production. It was found thatthe more oligotrophic enclosure (unmixed) experienced proportionallyhigher utilization of organic carbon. Some of these resultsare explained by our data while others require more sophisticatedexperimentation, both in the design of the containers and inthe types of observations.  相似文献   

19.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

20.
Production of Penilia avirostris in Kingston Harbour, Jamaica   总被引:2,自引:0,他引:2  
The cladoceran Penilia avirostris is one of the more abundantand widespread members of the crustacean zooplankton in nearshoretropical and subtropical waters. Its abundance, biomass, fecundity,development rate and production were estimated in Kingston Harbour,Jamaica, during an 18 month period. Mean annual abundance ofPenilia was 1821 m–3, while biomass (excluding eggs/embryos)was 2.87 mg ash-free dry-weight (AFDW) m–3 (43.1 mg AFDWm–2), accounting for 13% of the copepod community biomass.Fecundity increased with body size. There was no clear seasonalpattern of abundance, size or fecundity, nor were physical orbiological variables correlated to these variations. Developmenttime averaged 20.5 h for juveniles and 41.4 h for adult femalesduring incubations; there was no clear evidence of a diel patternto molting. Growth rate appeared to be exponential, with correspondingsomatic growth rates, averaging 0.27 day–1 for juveniles,and 0.34 day–1 for somatic plus reproductive growth inadult females. Annual production was estimated as 173 kJ m–2year–1,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号