首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen found in unburned tobacco and tobacco smoke, and is believed to play an important role in human tobacco-induced cancers. In previous studies, NNK has been reported to induce oxidative DNA damage, and to alter DNA repair processes, effects that could contribute to pulmonary tumorigenesis in rodent models. The goal of this study was to determine the effects of NNK on levels of 8-hydroxydeoxyguanosine (8-OHdG), a biomarker of DNA oxidation, and activity of base excision repair (BER), which repairs oxidative DNA damage. Female A/J mice were treated with a tumorigenic dose of NNK (10 μmol) i.p. At 1, 2 and 24 h post treatment, there were no statistically significant differences in lung or liver 8-OHdG levels between control and NNK-treated mice (P > 0.05). Furthermore, NNK did not alter lung or liver BER activity compared to control at any time point (P > 0.05). In summary, acute treatment with a tumorigenic dose of NNK did not stimulate oxidative DNA damage or significantly alter BER activity, and these effects may not be major mechanisms of action of NNK in mouse models.  相似文献   

2.
Exposure to genotoxic carcinogens in tobacco smoke is a major cause of lung cancer. However, the effect this has on DNA copy number and genomic stability during lung carcinogenesis is unclear. Here we used bacterial artificial chromosome array-based comparative genomic hybridization to examine the effect of NNK, a potent human lung carcinogen present in tobacco smoke, on the major genomic changes occurring during mouse lung adenocarcinogenesis. Observed were significantly more gross chromosomal changes in NNK-induced tumors compared with the spontaneous tumors. An average of 5.6 chromosomes were affected by large-scale changes in DNA copy number per NNK-induced tumor compared with only 2.0 in spontaneous lung tumors (p = 0.017). Further analysis showed that gains on chromosomes 6 and 8, and losses on chromosomes 11 and 14 were more common in NNK-induced tumors (p 相似文献   

3.
In a previous preliminary investigation, we reported on the excretion, tissue disposition and metabolism of the chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) in the rat, but similar studies in the mouse have not been explored. Following the oral administration of p-XSC (50 micromol/kg body weight), selenium excretion in feces was comparable to that in urine in mice, but in rats, feces was the major route of excretion. Tetraselenocyclophane (TSC) was the major metabolite detected in mouse and rat feces. In both species, levels of selenium in exhaled air were negligible. At termination, in the mouse, the stomach had the highest selenium content followed by liver and blood, but lung and kidney contained negligible levels of selenium; in the rat, the selenium level in liver was the highest followed by kidney, stomach, blood and lung. The identification of TSC as a fecal metabolite in both species let us to postulate the following metabolic pathway: p-XSC-->glutathione conjugate (p-XSeSG)-->a selenol (p-XSeH)-->TSC. Since the glutathione conjugate appears to be the proximal precursor for the selenol metabolite that may be an important intermediate in cancer chemoprevention, we report for the first time the synthesis of p-XSeSG and its other potential metabolites, namely the cysteine- and N-acetylcysteine-conjugates of p-XSC. HPLC analysis of the urine and bile showed a few metabolites of p-XSC; none of which eluted with the synthetic standards described above. When we examined the conversion of p-XSC and p-XSeSG in vitro using rat cecal microflora, TSC was formed from p-XSeSG but not from p-XSC. The formation of TSC from p-XSC in vivo but not in vitro suggests that p-XSC needs to be metabolized to p-XSeSG or an intermediate derived from its further metabolism. Thus, p-XSeSG was given orally to rats and the results showed that the pattern of selenium excretion after p-XSeSG treatment was similar to that of p-XSC; TSC was also identified as a fecal metabolite of p-XSeSG. It may be that the conversion of p-XSeSG to TSC is too facile, or the mere conjugation of p-XSC with glutathione does not occur in rats and mice.  相似文献   

4.
Ninety percent of all human lung cancers are related to cigarette smoking. Both tobacco smoke and lung tumorigenesis are associated with drastically reduced levels of Clara cell 10-kDa protein (CC10), a multifunctional secreted protein, naturally produced by the airway epithelia of virtually all mammals. We previously reported that the expression of CC10 is markedly reduced in animals exposed to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK, a potent carcinogen in tobacco smoke. Furthermore, it has been reported that CC10 expression, induced in certain tumor cells, reverses the transformed phenotype. We demonstrate here that NNK exposure of CC10-knock-out (CC10-KO) mice causes a significantly higher incidence of airway epithelial hyperplasia and lung adenomas compared with wild type (WT) littermates (30% CC10-KO versus 5% WT, p = 0.041). We also found that compared with NNK-treated WT mice, CC10-KO mice manifest increased frequency of K-ras mutation, elevated level of Fas ligand (FasL) expression, and increased MAPK/Erk phosphorylation, all of which are considered predisposing events in NNK-induced lung tumorigenesis. We propose that CC10 has a protective role against NNK-induced lung tumorigenesis mediated via down-regulation of the above-mentioned predisposing events.  相似文献   

5.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, induces lung adenomas in A/J mice following a single intraperitoneal (i.p.) injection. However, inhalation of mainstream cigarette smoke does not induce or promote NNK-induced lung tumors in this mouse strain purported to be sensitive to chemically-induced lung tumorigenesis. The critical events for NNK-induced lung tumorigenesis in A/J mice is thought to involve O(6)-methylguanine (O(6)MeG) adduct formation, GC-->AT transitional mispairing, and activation of the K-ras proto-oncogene. The objective of this study was to test the hypothesis that a smoke-induced shift in NNK metabolism led to the observed decrease in O(6)MeG adducts in the lung and liver of A/J mice co-administered NNK with a concomitant 2-h exposure to cigarette smoke as observed in previous studies. Following 2 h nose-only exposure to mainstream cigarette smoke (600 mg total suspended particulates/m(3) of air), mice (n=12) were administered 7.5 micromol NNK (10 microCi [5-3H]NNK) by i.p. injection. A control group of 12 mice was sham-exposed to HEPA-filtered air for 2 h prior to i.p. administration of 7.5 micromol NNK (10 microCi [5-3H]NNK). Exposure to mainstream cigarette smoke had no effect on total excretion of NNK metabolites in 24 h urine; however, the metabolite pattern was significantly changed. Mice exposed to mainstream cigarette smoke excreted 25% more 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) than control mice, a statistically significant increase (P<0.0001). Cigarette smoke exposure significantly reduced alpha-hydroxylation of NNK to potential methylating species; this is based on the 15% reduction in excretion of the 4-(3-pyridyl)-4-hydroxybutanoic acid and 42% reduction in excretion of 4-(3-pyridyl)-4-oxobutanoic acid versus control. Detoxication of NNK and NNAL by pyridine-N-oxidation, and glucuronidation of NNAL were not significantly different in the two groups of mice. The observed reduction in alpha-hydroxylation of NNK to potential methylating species in mainstream cigarette smoke-exposed A/J mice provides further mechanistic support for earlier studies demonstrating that concurrent inhalation of mainstream cigarette smoke results in a significant reduction of NNK-induced O(6)MeG adduct formation in lung and liver of A/J mice compared to mice treated only with NNK.  相似文献   

6.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) found in chewing tobacco, snuff, cigarettes, and cigars is a tobacco-specific nitrosamine and classified as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). NNK given intraperitoneally was seen to induce lung and liver adenomas.To evaluate the genotoxicity of NNK in vivo, NNK was intraperitoneally administered to Muta™ Mouse at two concentrations (125 and 250 mg/kg, once a week for 4 weeks) followed by the measurement of mutant frequencies in the lacZ and cII genes from lung and liver in the same mice. Characterization of the types of the mutation was determined by sequencing the cII genes from mutant plaques. The mutant frequencies in both target genes from both organs dose-dependently increased up to 10 times compared to those of the control group. For the types of mutations, the ratio of the G:C to A:T mutation in the total number of mutants was less than the ratio of A:T to T:A and A:T to C:G transversion, contrary to a previous report [Cancer Res, 49 (1989) 5305]. The A:T to T:A transversion was the most highly induced mutation both in the lung and liver cII genes. The increasing rate of mutant frequencies in lung and liver over the vehicle control was 55 and 56 times, respectively, while the increasing rate of G:C to A:T transition was only 1.9 and 2.8 times, respectively.These observations show that NNK predominantly induces DNA adducts leading to A:T to T:A and/or A:T to C:G mutations in the transgene.  相似文献   

7.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen contained in cigarette smoke. NNK significantly contributes to smoking-related lung cancer, but the molecular mechanism remains enigmatic. Bcl2 and c-Myc are two major oncogenic proteins that cooperatively promote tumor development. We report here that NNK simultaneously stimulates Bcl2 phosphorylation exclusively at Ser(70) and c-Myc at Thr(58) and Ser(62) through activation of both ERK1/2 and PKCalpha, which is required for NNK-induced survival and proliferation of human lung cancer cells. Treatment of cells with staurosporine or PD98059 blocks both Bcl2 and c-Myc phosphorylation and results in suppression of NNK-induced proliferation. Specific depletion of c-Myc expression by RNA interference retards G(1)/S cell cycle transition and blocks NNK-induced cell proliferation. Phosphorylation of Bcl2 at Ser(70) promotes a direct interaction between Bcl2 and c-Myc in the nucleus and on the outer mitochondrial membrane that significantly enhances the half-life of the c-Myc protein. Thus, NNK-induced functional cooperation of Bcl2 and c-Myc in promoting cell survival and proliferation may occur in a novel mechanism involving their phosphorylation, which may lead to development of human lung cancer and/or chemoresistance.  相似文献   

8.
This study investigated the individual and combined effects of beta-carotene with a common flavonoid (naringin, quercetin or rutin) on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-related carcinogen in human. A human lung cancer cell line, A549, was pre-incubated with beta-carotene, a flavonoid, or both for 1h followed by incubation with NNK for 4 h. Then, we determined DNA strand breaks and the level of 7-methylguanine (7-mGua), a product of NNK metabolism by cytochrome P450 (CYP). We showed that beta-carotene at 20 microM significantly enhanced NNK-induced DNA strand breaks and 7-mGua levels by 90% (p < 0.05) and 70% (p < 0.05), respectively, and that the effect of beta-carotene was associated with an increased metabolism of NNK by CYP because the concomitant addition of 1-aminobenzotriazole, a CYP inhibitor, with beta-carotene to cells strongly inhibited NNK-induced DNA strand breaks. In contrast to beta-carotene, incubation of cells with naringin, quercetin or rutin added at 23 microM led to significant inhibition of NNK-induced DNA strand breaks, and the effect was in the order of quercetin > naringin > rutin. However, these flavonoids did not significantly affect the level of 7-mGua induced by NNK. Co-incubation of beta-carotene with any of these flavonoids significantly inhibited the enhancing effect of beta-carotene on NNK-induced DNA strand breaks; the effects of flavonoids were dose-dependent and were also in the order of quercetin > naringin > rutin. Co-incubation of beta-carotene with any of these flavonoids also significantly inhibited the loss of beta-carotene incorporated into the cells, and the effects of the flavonoids were also in the order of quercetin > naringin > rutin. The protective effects of these flavonoids may be attributed to their antioxidant activities because they significantly decreased intracellular ROS, and the effects were also in the order of quercetin > naringin > rutin. These in vitro results suggest that a combination of beta-carotene with naringin, rutin, or quercetin may increase the safety of beta-carotene.  相似文献   

9.
To gain insight into the mechanism by which angiotensin II type 2 receptor (AT(2)) regulates carcinogen-induced lung tumorigenesis, we have newly developed anti-AT(2) single chain variable fragment (ScFv) antibodies using a rodent phage-displayed recombinant antibody library with various peptide fragments of the receptor protein, and investigated the expression of the AT(2) receptor protein. The specificity of the antibodies was verified using AT(2) over-expressing COS-7 cells and AT(2) naturally expressing PC12W cells. In control wild type mouse lung, a stronger immunoreactivity was observed in bronchial epithelial cells. A moderate immunoreactivity was detected in pulmonary vascular walls and vascular endothelial cells. In the lungs possessing tobacco-specific nitrosamine (NNK)-induced tumors, significantly increased AT(2) and AT(1 )immunostaining was observed in adenomatous lesions. These data suggest that the increase in both receptors' expression in the alveolar epithelial cells may be accompanied with the onset of NNK-induced tumorigenesis and hence play important roles in lung tumorigenesis.  相似文献   

10.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

11.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen in cigarette smoke. NNK cannot only induce DNA damage but also promotes the survival of human lung cancer cells. Protein kinase C (PKC)iota is an atypical PKC isoform and plays an important role in cell survival, but the downstream survival substrate(s) is not yet identified. Bad, a proapoptotic BH3-only member of Bcl2 family, is co-expressed with PKCiota in both small cell lung cancer and non-small cell lung cancer cells. We discovered that NNK potently induces multisite Bad phosphorylation at Ser-112, Ser-136, and Ser-155 via activation of PKCiota in association with increased survival of human lung cancer cells. Purified, active PKCiota can directly phosphorylate both endogenous and recombinant Bad at these three sites and disrupt Bad/Bcl-XL binding in vitro. Overexpression of PKCiota results in an enhancement of Bad phosphorylation. NNK also stimulates activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the PKC inhibitor (staurosporine) or a Src-specific inhibitor (PP2) can block NNK-induced Bad phosphorylation and promote apoptotic cell death. The beta-adrenergic receptor inhibitor propranolol blocks both NNK-induced activation of PKCiota and Bad phosphorylation, indicating that NNK-induced Bad phosphorylation occurs at least in part through the upstream beta-adrenergic receptor. Mechanistically, NNK-induced Bad phosphorylation prevents its interaction with Bcl-XL. Because the specific depletion of PKCiota by RNA interference inhibits both NNK-induced Bad phosphorylation and survival, this confirms that PKCiota is a necessary component in NNK-mediated survival signaling. Collectively, these findings reveal a novel role for PKCiota as an NNK-activated physiological Bad kinase that can directly phosphorylate and inactivate this proapoptotic BH3-only protein, which leads to enhanced survival and chemoresistance of human lung cancer cells.  相似文献   

12.
2(I)-O-p-Tolylsulfonylcyclomaltoheptaose was obtained in 42% yield by reaction of 1-(p-tolylsulfonyl)-(1H)-1,2,4-triazole on NaH-deprotonated cyclomaltoheptaose in DMF and further converted into the corresponding mono-2(I),3(I)-manno-epoxide.  相似文献   

13.
To enhance the efficacy of fenretinide (4HPR)-induced reactive oxygen species (ROS) in neuroblastoma, 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines and spheroids, the latter being a three-dimensional tumor model. 4HPR exposure (2.5-10 μM, 24 h) resulted in ROS induction (114-633%) and increased GSH levels (68-120%). A GSH depletion of 80% of basal levels was observed in the presence of BSO (25-100 μM, 24 h). The 4HPR-BSO combination resulted in slightly increased ROS levels (1.1- to 1.3-fold) accompanied by an increase in cytotoxicity (110-150%) compared to 4HPR treatment alone. A correlation was observed between the ROS-inducing capacity of each cell line and the increase in cytotoxicity induced by 4HPR-BSO compared to 4HPR. No significant correlation between baseline antioxidant levels and sensitivity to 4HPR or BSO was observed. In spheroids, 4HPR-BSO induced a strong synergistic growth retardation and induction of apoptosis. Our data show that BSO increased the cytotoxic effects of 4HPR in neuroblastoma monolayers and spheroids in ROS-producing cell lines. This indicates that the 4HPR-BSO combination might be a promising new strategy in the treatment of neuroblastoma.  相似文献   

14.
Mounting evidence indicates that cigarette smoking not only promotes tumorigenesis but also may increase the spread of cancer cells in the body. However, the intracellular mechanism(s) by which cigarette smoking promotes metastasis of human lung cancer remains enigmatic. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important component in cigarette smoke and is formed by nitrosation of nicotine. mu- and m-calpain (calpain I and calpain II) are major members of the calpain family, which are ubiquitously expressed in both small cell lung cancer and non-small cell lung cancer cells. Our findings indicated that NNK potently induces phosphorylation of both mu- and m-calpain in association with their activation and increased migration as well as invasion of lung cancer cells. Treatment of cells with PD98059 blocked phosphorylation of m- and mu-calpain and resulted in suppression of NNK-induced cell migration and invasion. p44 MAPK/extracellular signal-regulated kinase 1 (ERK1) and p42 MAPK/ERK2 were activated by NNK, co-localized with mu- and m-calpain in cytoplasm, and directly phosphorylated mu- and m-calpain in vitro. These findings suggest a role for the ERK1/2 kinases as NNK-activated physiological calpain kinases. Specific knock-down of mu- and/or m-calpain expression by RNA interference blocked NNK-stimulated migration and invasion, suggesting that mu- and m-calpain may act as required targets in a NNK-induced metastatic signaling pathway. Furthermore, NNK promotes secretion of active mu- and m-calpain from lung cancer cells through vesicles, which may have the potential to cleave substrates in the extracellular matrix. Thus, NNK-induced cell migration and invasion may occur, at least in part, through a novel mechanism involving phosphorylation of calpains that leads to their activation and secretion, which may contribute to metastasis and/or progression of lung cancer.  相似文献   

15.
Human papillomavirus (HPV) infection is an established etiological factor for cervical cancer. Epidemiological studies suggest that smoking in combination with HPV infection plays a significant role in the etiology of this disease. We have previously shown that the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is present in human cervical mucus. Here, we hypothesized that treatment of HPV-16-immortalized human ectocervical cells (Ecto1/E6E7) with NNK would alter the expression of genes involved in cellular transformation. Ecto1/E6E7 cells were treated with water (vehicle control) alone or with 1 μM, 10 μM, and 100 μM of NNK in water for 12 weeks. The colony-forming efficiency increased following NNK treatment; the maximum effect was observed after 12 weeks with 100 μM NNK. Microarray analysis revealed that, independent of the dose of NNK, expression of 30 genes was significantly altered; 22 of these genes showed a dose-response pattern. Genes identified are categorized as immune response (LTB4R), RNA surveillance pathway (SMG1), metabolism (ALDH7A1), genes frequently expressed in later stages of neoplastic development (MT1F), DNA binding (HIST3H3 and CHD1L), and protein biosynthesis (UBA52). Selected genes were confirmed by qRT-PCR. Western blot analysis indicates that phosphorylation of histone 3 at serine 10, a marker of cellular transformation, was up-regulated in cells treated with NNK. This is the first study showing that NNK can alter gene expression that may, in part, account for transformation of HPV-immortalized human cervical cells. The results support previous epidemiological observations that, in addition to HPV, tobacco smoking also plays an important role in the development of cervical cancer.  相似文献   

16.
A growing body of evidence from studies in laboratory animals indicates that green tea protects against cancer development at various organ sites. We have previously shown that green tea, administered as drinking water, inhibits lung tumor development in A/J mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-l-butanone (NNK), a potent nicotine-derived lung carcinogen found in tobacco. The inhibitory effect of green tea has been attributed to its major polyphenolic compound, epigallocatechin gallate (EGCG), and, to a lesser extent, to caffeine. We have also demonstrated that while levels of O6-methylguanine, a critical lesion in NNK lung tumorigenesis, were not affected in lung DNA. However, the levels of 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, were significantly suppressed in mice treated with green tea or EGCG. These studies underscore the importance of the antioxidant activity of green tea and EGCG for their inhibitory activity against lung tumorigenesis. Unlike green tea, the effect of black tea on carcinogenesis has been scarcely studied, even though the worldwide production and consumption of black tea far exceeds that of green tea. The oxidation products found in black tea, thearubigins and theaflavins, also possess antioxidant activity, suggesting that black tea may also inhibit NNK-induced lung tumorigenesis. Indeed, bioassays in A/J mice have shown that black tea given as drinking water retarded the development of lung cancer caused by NNK. However, data on the relationship of black tea consumption with the lung cancer risk in humans are limited and inconclusive. There is a need for additional tumor bioassays in animal models to better examine the protective role of black tea against lung cancer. The development of adenocarcinomas and adenosquamous carcinomas in F344 rats upon chronic administration of NNK provides an important and relevant model for lung carcinogenesis in smokers. Thus far, no information was previously available regarding the effects of tea on this model. We conducted a 2-year lifetime bioassay in F344 rats to determine whether black tea and caffeine are protective against lung tumorigenesis induced by NNK. Our studies in both mice and rats have generated important new data that support green and black tea and caffeine as potential preventive agents against lung cancer, suggesting that a closer examination of the roles of tea and caffeine on lung cancer in smokers may be warranted.  相似文献   

17.
NNK诱发BEP2D细胞产生活性氧及其对DNA的损伤   总被引:4,自引:0,他引:4  
通过测定细胞内和细胞上清中活性氧(reactive oxygen species,ROS)水平,以及DNA 加合物——8-羟基脱氧鸟嘌呤核苷(8-hydroxydeoxyguanosine,OH8dG)含量,对烟草特异亚硝胺类化合物4-甲基亚硝胺-1(3-吡啶基)-1-丁酮(4-(m ethylnitrosam ino)-1-(3-pyridyl)-1-butanone,NNK)诱发人乳头状病毒永生化的人支气管上皮细胞(hum an papillom avirus-im m ortalized hum anbronchialepithelialcellline,BEP2D)产生的ROS及其对DNA 的氧化损伤进行研究,并观察纳米硒的保护作用.结果表明,BEP2D 细胞经不同浓度的NNK 作用后,细胞内和细胞上清中ROS以及OH8dG含量均显著增加,并有较好的剂量效应关系.1 μm ol·L- 1纳米硒(nanoselenuim ,NS)能明显抑制NNK 诱发BEP2D细胞产生的ROS及OH8dG 水平.揭示NNK 能造成细胞的氧化损伤,而NS对NNK 所致细胞的氧化损伤有保护作用.  相似文献   

18.
Many efforts have been made to obtain active and less toxic Vitamin D analogs for new clinical applications. The results of previous studies demonstrated the efficacy and safety of topical treatment of psoriasis with one of these analogs, 1,24-dihydroxyvitamin D(3), tacalcitol (1,24-(OH)(2)D(3)). In the present study, we evaluated the toxicity and antitumor effect of this analog. Lethal toxicity of 1,24-(OH)(2)D(3) after s.c. injection was significantly lower than that of calcitriol. No significant differences were observed in the toxicity of the analogs when administered p.o. Calcium levels in the serum of mice treated with calcitriol were significantly higher (111%) than those in mice treated with 1,24-(OH)(2)D(3) (89%) at 5 day after the first s.c. (10 microg/kg/day) administration in comparison to the control (healthy, untreated animals). Oral administration increased the calcium level by 78% for calcitriol and only to 47% over the control for 1,24-(OH)(2)D(3). Parallel administration of clodronate prevented the calcitriol- and 1,24-(OH)(2)D(3)-induced lethal toxicity and also prevented increase in calcium levels. Single therapy with calcitriol did not affect tumor growth in the 16/C mouse mammary cancer model. In contrary, 1,24-(OH)(2)D(3) alone reduced tumor volume to 41% of control. Cisplatin alone did not affect growth of 16/C tumor in these conditions. The growth of tumors in the presence of cisplatin was inhibited by 1,24-(OH)(2)D(3) but not by calcitriol. Interestingly, the inhibition of tumor growth in cisplatin-treated mice by 1,24-(OH)(2)D(3) was greater, than that observed in mice treated with this analog alone. In conclusion, 1,24-(OH)(2)D(3) revealed higher antitumor and lower calcemic activity and toxicity than calcitriol. Application of biphosphonates along with Vitamin D analogs is sufficient to overcome the calcemic and toxic side effects of the proposed treatment.  相似文献   

19.
This study investigated whether slow-releasing organic hydrogen sulfide donors act through the same mechanisms as those of inorganic donors to protect neurons from oxidative stress. By inducing oxidative stress in a neuronal cell line HT22 with glutamate, we investigated the protective mechanisms of the organic donors: ADT-OH [5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione], the most widely used moiety for synthesizing slow-releasing hydrogen sulfide donors, and ADT, a methyl derivative of ADT-OH. The organic donors were more potent than the inorganic donor sodium hydrogensulfide (NaHS) in protecting HT22 cells against glutamate toxicity. Consistent with previous publications, NaHS partially restored glutamate-depleted glutathione (GSH) levels, protected HT22 from direct free radical damage induced by hydrogen peroxide (H2O2), and NaHS protection was abolished by a KATP channel blocker glibenclamide. However, neither ADT nor ADT-OH enhanced glutamate-depleted GSH levels or protected HT22 from H2O2-induced oxidative stress. Glibenclamide, which abolished NaHS neuroprotection against oxidative stress, did not block ADT and ADT-OH neuroprotection against glutamate-induced oxidative stress. Unexpectedly, we found that glutamate induced AMPK activation and that compound C, a well-established AMPK inhibitor, remarkably protected HT22 from glutamate-induced oxidative stress, suggesting that AMPK activation contributed to oxidative glutamate toxicity. Interestingly, all hydrogen sulfide donors, including NaHS, remarkably attenuated glutamate-induced AMPK activation. However, under oxidative glutamate toxicity, compound C only increased the viability of HT22 cells treated with NaHS, but did not further increase ADT and ADT-OH neuroprotection. Thus, suppressing AMPK activation likely contributed to ADT and ADT-OH neuroprotection. In conclusion, hydrogen sulfide donors acted through differential mechanisms to confer neuroprotection against oxidative toxicity and suppressing AMPK activation was a possible mechanism underlying neuroprotection of organic hydrogen sulfide donors against oxidative toxicity.  相似文献   

20.
The commonly used anti-cancer drug chlorambucil is the primary treatment for patients with chronic lymphocytic leukaemia. Chlorambucil has been shown to be detoxified by human glutathione transferase Pi (GST P1-1), an enzyme that is often found over-expressed in cancer tissues. The allelic variants of GST P1-1 are associated with differing susceptibilities to leukaemia and differ markedly in their efficiency in catalysing glutathione (GSH) conjugation reactions. Here, we perform detailed kinetic studies of the allelic variants with the aid of three representative co-substrates. We show that the differing catalytic properties of the variants are highly substrate-dependent. We show also that all variants exhibit the same temperature stability in the range 10 °C to 45 °C. We have determined the crystal structures of GST P1-1 in complex with chlorambucil and its GSH conjugate for two of these allelic variants that have different residues at positions 104 and 113. Chlorambucil is found to bind in a non-productive mode to the substrate-binding site (H-site) in the absence of GSH. This result suggests that under certain stress conditions where GSH levels are low, GST P1-1 can inactivate the drug by sequestering it from the surrounding medium. However, in the presence of GSH, chlorambucil binds in the H-site in a productive mode and undergoes a conjugation reaction with GSH present in the crystal. The crystal structure of the GSH-chlorambucil complex bound to the *C variant is identical with the *A variant ruling out the hypothesis that primary structure differences between the variants cause structural changes at the active site. Finally, we show that chlorambucil is a very poor inhibitor of the enzyme in contrast to ethacrynic acid, which binds to the enzyme in a similar fashion but can act as both substrate and inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号