首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Tissue cultures ofTriticum aestivum L. (wheat) initiated from young inflorescences and immature embryos possessed the potential for regeneration of whole plants. Both a friable and a compact type of callus were produced on Murashige and Skoog's medium with 2 mg/l 2,4-dichlorophenoxyacetic acid. The friable callus contained meristematic centers in which the peripheral cells ceased dividing, elongated, and could be easily separated. Roots were frequently formed in this type of callus. The compact, yellowish, and nodular callus arose from the epithelial and sub-epithelial cells of the embryo scutellum, and the rachis and glumes of the young inflorescence. Such callus had a smooth surface and characteristic chlorophyllous areas. Plants were regenerated only from the compact callus. The first sign of differentiation in the compact callus was the formation of a cleft or notch on the smooth surface, followed by the appearance of trichomes and the direct development of leafy structures which were not associated initially with any shoot meristems. Multiple shoots subsequently arose at the bases of the leafy structures, which are considered modifications of the scutellum, a definitive part of the cereal embryo. Accordingly, we suggest that while typical bipolar embryos are generally not formed, plant regeneration nevertheless takes place through embryogenesis and the precocious germination of the embryoids. Plants regenerated from immature embryo and inflorescence cultures were grown to maturity in soil, and were shown to have the normal chromosome number of 2n=6x=42.  相似文献   

2.
Sodium azide is a potent mutagen of maize (Zea mays L.) kernels that may have potential as a point mutagen for inducing biochemical mutations in maize tissue cultures. Azide mutagenicity was evaluated in friable, embryogenic maize callus and a nonregenerable maize suspension culture by determining the number of resistant variant cell lines able to grow on media containing inhibitory concentrations of lysine plus threonine (LT). The number of LT-resistant variants selected from either culture type did not increase in response to azide treatment. In addition, there was no increase in somatic mutations in more than 100 plants regenerated from azide treated LT-resistant lines. The levels of mutagenic metabolite of azide (presumably azidoalanine), were determined by bioassay in the two azide-treated maize callus types and compared to levels of mutagenic metabolite in embryos isolated from azide-treated kernels. The two types of maize tissue cultures and isolated embryos contained similar levels of mutagenic metabolite 4 h after azide treatment indicating similar uptake and conversion of azide to mutagenic metabolite in the three tissues. Mutagenic metabolite in azide-treated embryos did not significantly decrease after 40 h. However, mutagenic metabolite levels in both azide-treated tissue cultures decreased to near background levels within 20 h providing evidence for rapid metabolism of the azide mutagenic metabolite. The lack of evidence for azide mutagenicity in maize callus and its known potent mutagenicity in kernels appears to be associated with specific differences in azide metabolism between callus tissues and kernel embryos.  相似文献   

3.
Summary Compact callus clusters showing a certain level of cellular or tissue differentiation were established from Catharanthus roseus stem and leaf explants in a modified MS liquid induction medium supplemented with 5.37 μM α-naphthaleneacetic acid and 4.65 μM kinetin. In the induction medium most leaf explants developed into friable half-closed hollow callus clusters, whereas in the same medium containing 2,4-dichlorophenoxyacetic acid instead of α-naphthaleneacetic acid, most leaf explants were induced to form dispersed cell suspension cultures. Characteristics of these different types of suspension cultures were compared, and the results showed that the compact callus clusters could synthesize indole alkaloids 1.9- and 2.4-fold higher than the half-closed hollow callus clusters and dispersed cell cultures, respectively. The degree of compaction expressed by the ratio of fresh weight to dry weight of these suspension cultures was correlated to indole alkaloid production. Our studies also postulated that the level of cellular/tissue differentiation might be responsible for these different alkaloid synthesis capabilities. Sucrose regime affected some properties (the size, degree of compaction, differentiation level) of the compact callus cluster cultures and therefore influenced alkaloid production.  相似文献   

4.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

5.
ABSTRACT

Two types of callus were produced by pepper explants cultured in various media containing auxins, the cytokinin 6-benzylaminopurine (BAP) and the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA). Callus produced on media containing auxins alone was friable, grey-green or green-orange in colour and more compact, whereas when BAP was added to culture media with a low concentration of auxin or when the medium contained TIBA alone, the callus produced was white and very hard. This type of callus was also produced in cultures of older tissues and of young tissues cultured on hormonefree medium. Results are discussed in relation to the role of cytokinins in wounding, phenylpropanoid metabolism and lignin biosynthesis.  相似文献   

6.
Primary globular callus from immature zygotic embryos and friable embryogenic tissue derived from mature zygotic embryos were used to establish suspension cultures. Callus cultures were established either on modified Y3 or MS medium containing 475–500 M 2,4-D or 250 M picloram and 0.3% (w/v) activated charcoal. Suspension cultures of both cell lines were established in modified Y3 medium containing 10 M 2,4-D. The establishment of cell suspensions from friable embryogenic tissue took only 2 months, in contrast with suspensions from primary globular callus which took 3–5 months to establish. Embryo differentiation was observed only in cell suspensions derived from the friable embryogenic tissue after plating aliquots on regeneration medium. Germinated embryos were recovered and plantlets were successfully established under greenhouse conditions.Abbreviations CET compact embryogenic tissue - FET friable embryogenic tissue - CIM callus induction medium - PGC primary globular callus - 2,3-D 2,4-dichlorphenoxyacetic acid Y3-Eeuwens' medium - MS Murashige & Skoog medium - PVP-40 polyvinylpyrrolidone - KM Kao & Michayluk vitamins - ABA abscisic acid  相似文献   

7.
Callus and suspension cultures of two genotypes and two morphological forms (friable and compact) were established on MS medium supplemented with 10.47 μM NAA and 4.5 μM BA. Biomass increase in 14-day-culture was calculated and ursolic acid (UA) content was determined by HPLC and MS. The growth rate and UA accumulation was found to be significant in the two genotypes. The compact biomass of both genotypes demonstrated a much slower growth rate and a lower UA accumulation than the friable biomasses. The accumulation of UA in suspension culture was constant in time when derived from the friable callus but it declined, when derived from the compact callus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Inflorencence stalks from greenhouse-grownGladiolus plants of the cultivars ‘Blue Isle’ and ‘Hunting Song’ cultured on a Murashige and Skoog basal salts medium supplemented with 53.6 μM 1-napthaleneacetic acid formed a compact, not friable type of callus that regenerated plantlets. Cormel slices and intact plantlets of three cultivars (‘Peter Pears’, ‘Rosa Supreme’, ‘Jenny Lee’) propagated through tissue culture formed a friable type of callus when cultured on Murashige and Skoog basal salts medium supplemented with 2,4-dichlorophenoxyacetic acid. This friable callus readily formed a cell suspension when the callus was placed in a liquid medium. Plants were regenerated from two-month-old suspension cell cultures of the commercial cultivar ‘Peter Pears’ after the suspension cells had been cultured on solid medium.  相似文献   

9.
Summary Stable cell suspension cultures were established from two types of calli (one compact, nodular and embryogenic, the other friable and embryogenic) derived from cultured immature embryos of wheat (cv FLA302). Only aged calli, which had been subcultured for at least 5–8 months, formed suspensions comprised mainly of groups of small, round, densely cytoplasmic, starch-containing cells. Only the embryogenic suspension derived from the aged, compact and nodular callus formed distinct somatic embryos when plated on regeneration media containing IAA and zeatin. Upon subsequent transfer to fresh regeneration medium more than 200 green rooted plants were obtained.Abbreviations 6-BA 6-benzylaminopurine - CH casein hydrolysate - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) basal medium - NAA naphthaleneacetic acid - PCV packed cell volume  相似文献   

10.
Summary The developmental histology of somatic embryo (=embryoid) formation in cultured immature embryos of hybrid maize cultivars (Zea mays L.) is described. Embryos cultured on media containing 2% sucrose formed distinct globular embryoids. These embryoids arose either directly by divisions confined to the epidermal and the subepidermal cells at the coleorhizal end of the scutellum or from a soft and friable embryogenic callus produced by them. On media containing 6% sucrose divisions were initiated in the cells adjacent to the procambium of the cultured embryos. Subsequently, zones of meristematic cells also were observed in the region of the node and in the basal portion of the scutellum. Mature, well organized somatic embryos as well as a compact nodular type of embryogenic callus were produced as a result of localized meristematic activity along the tip of the scutellum toward the coleorhiza. Some embryos formed only the compact type of callus, and shoot primordia were organized later in the surface layers of this callus.Abbreviations CH casein hydrolysate - MS Murashige and Skoog's nutrient medium - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

11.
Yamamoto  H.  Tabata  M. 《Plant cell reports》1989,8(4):251-254
A protease similar to papain was produced by somatic embryos ofCarica papaya in association with the development of laticifers containing characteristic vesicles which probably originated from the endoplasmic reticulum. In contrast to somatic embryos, a papain-like protease was not detected in either friable or compact callus cultures which failed to develop laticifers. These observations strongly suggest that the differentiation into laticifers is required for papain production in papaya.  相似文献   

12.
Summary Embryogenic callus consisting of both Type 1, firm, compact, translucent, relatively slow growing callus and Type 2, highly friable, rapidly growing callus with well-formed somatic embryos, were observed in elite maize germplasm, notably B73 and hybrids with B73. Parental genotype is very important in the ability to identify and isolate embryogenic callus after 14 and 28 days in culture. A partial diallel analysis revealed that a large proportion of the genotypic variation was of the additive type although heterosis did positively increase culture response in most cases. A significant negative maternal effect for culture response was noted for inbred B73 from Reid-type germplasm while four lines sampled from Lancaster germplasm showed similar response whether used as male or female. Although significant media differences were observed in some genotypes, culture media did not preclude observation of Type 1 or Type 2 embryogenic cultures in this study after 14 and 28 days. Plants could be regenerated from all genotypes in this study after 14-days of culture, but not all genotypes were capable of sustained subculture and plant regeneration. Plant regeneration from Type 2 cultures of B73 and B73 hybrids has been obtained up to a year after initiation.  相似文献   

13.
Summary Fourteen varieties of indica rice (Oryza saliva L.) were examined for their capacity for plant regeneration from protoplasts using the nurse culture methods developed for japonica rice. Calli induced from germinating seeds were grouped into two types: type I, white and compact; type II, yellow and friable. In four varieties producing type II callus, colony formation (2%–4.5%) and plant regeneration (2%–35%) were observed. The inability to develop suspension cultures was a major obstacle in regenerating plants from protoplasts of the remaining rice varieties studied.  相似文献   

14.
Summary Immature embryos, inflorescences, and anthers of eight commercial cultivars of Triticum aestivum (wheat) formed embryogenic callus on a variety of media. Immature embryos (1.0–1.5 mm long) were found to be most suitable for embryogenic callus formation while anthers responded poorly; inflorescences gave intermediate values. Immature embryos of various cultivars showed significant differences in callus formation in response to 11 of the 12 media tested. No significant differences were observed when the embryos were cultred under similar conditions on MS medium with twice the concentration of inorganic salts, supplemented with 2,4-D, casein hydrolysate and glutamine. Furthermore, with inflorescences also no significant differences were observed. Explants on callus formation media formed two types of embryogenic calli: an off-white, compact, and nodular callus and a white compact callus. Upon successive subcultures (approximately 5 months), the nodular embryogenic callus became more prominent and was identified as aged callus. The aged callus upon further subculture, formed an off-white, soft, and friable embryogenic callus. Both the aged and friable calli maintained their embryogenic capacity over many subculture passages (to date up to 19 months). All embryogenic calli (1 month old) from the different callus-forming media, irrespective of expiant source, formed only green shoots on regeneration media that developed to maturity in the greenhouse. There were no significant differences in the response of calli derived from embryos and inflorescences cultured on the different initiation media. Also, the shoot-forming capacity of the cultivars was not significantly different. Anther-derived calli formed the least shoots. Aged and friable calli on regeneration media also formed green shoots but at lower frequencies. Plants from long-term culture have also been grown to maturity in soil.Florida Agricultural Experiment Station Journal Series No. R-00494  相似文献   

15.
Starting materials used in these experiments were taken from Triticum aestivum-Hay-naldia villosa hybrid embryo-derived callus, which had been maintained for nearly two years. To establish suspension cultures, the callus was subcultured till its compact texture became friable, and then shaken in a liquid medium. Upon transferring the suspended cells onto a semisolid medium, high frequency of plant regeneration was achieved.  相似文献   

16.
An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to 3 mg l−1, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryo-derived white friable callus were established using half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.  相似文献   

17.
A procedure is described for the regeneration of plants from protoplasts of tetraploid leek (Allium ampeloprasum L.), 2n = 4x =32. Regeneration-competent protoplasts could only be obtained from an embryogenic suspension culture that was initiated with friable, embryogenic callus derived from immature embryos. The generally low plating efficiency could be increased by embedding the protoplasts in Ca-alginate, compared to culturing the protoplasts in liquid or agarose-solidified medium. A minimum plating density of 2 × 105 pps/ml was required to obtain microcalli. Upon transfer of the protoplast-derived calli on agarose-solidified BDS medium, morphologically different callus types proliferated. After transfer to regeneration medium, compact or friable calli with an embryogenic appearance produced somatic embryos and plantlets at a frequency of up to 80%. Calli that had been classified as heterogeneous also regenerated shoots, but mainly via organogenesis, at a frequency of 46%. After transfer of shoots to half strength MS medium, healthy, well-rooted plants were obtained, that were successfully transferred to soil. All plants contained the tetraploid DNA level.  相似文献   

18.
1988年以来,小麦原生质体培养取得了重要进展[1—7],但成功还仅限于少数基因型,因此,为了建立和不断完善小麦及其他禾谷类植物原生质体培养的技术体系,还有待在更多的基因型中进行探索。在小麦远缘杂种系统中,1990年王铁邦等[8]培养小-偃麦原生质体获得成功。本文报道由普通小麦-簇毛麦杂种悬浮细胞和原生质体再生植株的结果。材料和方法起始材料取自本实验室继代保存近2年的小-簇麦杂种(2n=4x=28)愈伤组织。该愈伤组织是由小麦(TriticumaestivumL.,品种:“农大146”)×簇毛麦…  相似文献   

19.
This paper reported the production of haploid plants through anther culture in naked oat (Arena nuda). Calluses were induced from anthers of naked oat placed on various culture media. MS medium with 4% sucrose, 1% activated charcoal and no hormones gave the highest initiation frequencies (14.7%) of anther callus among media tested. Twelve green plants and one albino plant have been regenerated from anther calluses. Cytological examination of mitotic rooot tip ceils from three green anther plants showed that two of the plants were haploid (2n=3x=21) and one was diploid (2n=6x=42). The cell suspension cultures were established from pollen friable calluses in liquid medium. The suspension cells were cytologically stable during one year subcultures. Most of the ceils examined were haploid.  相似文献   

20.
Summary Embryogenic callus was induced from primary leaves of Vigna unguiculata (L.) Walp. in MS medium (Murashige and Skoog, 1962) containing 2,4-dichlorophenoxyacetic acid (2,4-D). Greenish-white, friable embryogenic calluses were used to establish suspension cultures. A shaking speed of 90 rpm and 0.4 ml packed cell volume per 25 ml medium were found to be optimal for maintaining suspension cultures. Globular, heart-shaped and torpedo-shaped embryos were developed in suspension culture containing 4.52 μM 2,4-D. Maturation of cotyledonary-stage somatic embryos was achieved on 0.05 μM 2,4-D, 5 μM abscisic acid and 3% mannitol. Twenty-two percent of the embryos were converted into plants and survived; survival in the field was 8–10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号