首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of insulin binding sites in Leydig cells dispersed with collagenase from rat testes was studied using insulin-coated gold particles as an electron opaque ligand. Using electron microscope is convenient to distinguish Leydig cells among a variety of cells in crude preparations by their ultrastructural characteristics. Leydig cells were shown to possess insulin-binding sites on their plasma membranes. Initial binding sites of insulin were located to the microvillous surfaces. Following binding, receptor-ligand complexes seemed to move to the intermicrovillous plasma membrane, then to be internalized. Two modes of the internalization were confirmed. Most of the receptor-ligand complexes on Leydig cells appeared to be internalized via large, uncoated plasma membrane invaginations, while the remainder became internalized via small pits into vesicles. The receptor-ligand complexes were subsequently transferred to large subsurface vacuoles with electron-lucent lumens believed to correspond to endosomes. The reason why IGCs on the postendosomal pathway moving toward lysosomes was also discussed.  相似文献   

2.
Endocytosis of immunoglobulin G (IgG)-coated colloidal gold particles in cultured mouse peritoneal macrophages was studied by scanning and transmission electron microscopy. At 4 degrees C, the tracers adhered to the plasma membrane and accumulated in coated pits located in the bottom of furrows or deep invaginations on the cell surface. In the presence of an excess of unlabeled mouse IgG, cellular binding of the tracer was reduced by 80 to 90%. After warming to 37 degrees C, surface-bound tracer particles were rapidly ingested and transported to small and large vesicles lacking membrane coat. From here, they were then passed over to multivesicular bodies and lysosomes characterized by their content of myelin-like figures and other inclusions. Double-labeling experiments with IgG-coated colloidal gold particles of two different sizes (20 and 5 nm diameter) indicated that the plasma membrane was depleted of binding sites after uptake of a polyvalent ligand. The restoration of the binding capacity was a slow process requiring ongoing protein synthesis. On the basis of these observations, a model for endocytosis of immune complexes in macrophages is presented. It includes the following four steps: IgG-containing macromolecular aggregates bind to specific receptors in the plasma membrane. These appear to be preclustered in coated pits or able to move laterally within the membrane even at 4 degrees C. The receptor-ligand complexes are internalized and transferred sequentially to larger uncoated vesicles or endosomes, multivesicular bodies, and lysosomes with inclusions of varying appearance. Receptors and ligands are degraded within the lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the receptor mediated endocytosis of a modified glycoprotein (N-acetylglucosamine-BSA) and mannan in cultured hepatocytes isolated from 19-days-old embryos. The binding sites for molecules exposing terminal N-acetylglucosamine (GlcNac) and mannose residues were localized and quantified at the ultrastructural level by means of protein-gold complexes. The binding sites were found to be randomly distributed as single gold particles on cultured hepatocyte cell surfaces not restricted to specialized areas of the plasma membrane. The gold ligands were internalized following a receptor mediated pathway, which was studied at different interval times (15, 30 and 60 min.) after incubating the cells with the electron dense markers.  相似文献   

4.
Monomeric ferritin-insulin was used as an ultrastructural marker to determine by quantitative electron microscopy the time course and route of insulin uptake in rat adipocytes. To approximate steady state membrane binding conditions prior to any internalization, adipocytes were prefixed with glutaraldehyde and incubated for 30 min with 70 nM monomeric ferritin-insulin. Electron micrographs of these cells showed that the ferritin-insulin particles were predominantly in small groups of receptor sites on the plasma membrane and in pinocytotic-like invaginations of the plasma membrane. Significant amounts of ferritin-insulin were observed in cytoplasmic vesicles of unfixed cells as early as 2 min and in multivesicular bodies and lysosome-like structures within 5 to 10 min after the addition of the ligand. Ferritin-insulin accumulation reached steady state levels in the cytoplasmic vesicles in 5 to 10 min and in the lysosome-like structures in 15 min. Little ferritin-insulin was bound to coated pits, and the relative paucity of coated pits found in adipocytes suggested that these specialized endocytotic structures have a relatively insignificant role in insulin uptake in fat cells. Quantitative analysis of the uptake process suggested that a proportion of the insulin internalized by the cell may not be transported to lysosomes, but may be recycled along with the insulin receptor to the plasma membrane.  相似文献   

5.
The internalization of FSH-receptor complexes was demonstrated in mouse testis by means of light and electron microscopic autoradiography. Chopped testicular pieces were incubated with radioiodinated FSH (131I-NIADDK-rat FSH-I-4) for 10, 20, 60 and 180 min. After incubation the pieces were fixed with glutaraldehyde containing tannic acid, and embedded in Spurr's resin. Semithin and ultrathin sections were cut for light and electron microscopic autoradiography, respectively. In light microscopic autoradiographs, silver grains were preferentially localized over Sertoli cells, regardless of incubation time. Sixty to 70% of the total number of grains were located over Sertoli cells which account for only about 4% of the total cell population of the seminiferous tubules. The majority of these grains correspond to the specific FSH binding sites, because few grains remained after incubation with an excess amount of unlabeled FSH. In electron microscopic autoradiographs, the half-distance (HD) value for the 131I-labeled line source was about 216 nm in the present study. After 10 min of incubation, 56.6% of the total number of silver grains were located over the plasma membrane of Sertoli cells. In testicular pieces incubated for longer periods (20, 60 and 180 min), both the percentage and relative concentration of grains increased in the Golgi apparatus and lysosomes and decreased in the plasma membrane. These results suggest that [131I]iodo-FSH first binds to FSH receptors on the plasma membrane of Sertoli cells, then FSH-receptor complexes are internalized. The increase in the number of grains over the lysosomes following longer incubation, indicates that internalized [131I]iodo-FSH or FSH-receptor complexes are subjected to degradation.  相似文献   

6.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

7.
We have studied how insulin-mediated internalization of insulin receptors and insulin activation of the insulin receptor kinase might be inter-related. Isolated rat adipocytes were exposed to 0, 6, or 500 ng/ml insulin for 40 min at 37 degrees C. Subsequently, plasma membrane, low-density microsomal membrane and high-density microsomal membrane subcellular fractions were prepared. Measurement of insulin binding to insulin receptors isolated from the membrane fractions revealed that exposure of cells to insulin resulted in a loss of binding activity (13% at 6 ng/ml, 27% at 500 ng/ml insulin) from the plasma membranes which was completely accounted for by the appearance of receptors in the low-density and high-density microsomal membrane fractions, indicating that insulin had induced translocation of insulin receptors from the surface to the cell interior. Measurement of kinase activity of the isolated receptors revealed that exposure of intact cells to 500 ng/ml insulin resulted in as much as a 35-fold increase in the intrinsic kinase activity of receptors from subcellular fractions. The kinase activity per receptor was equal in all fractions at 3-4 min but by 20 min the activity of the internalized receptors fell approximately 40% to a steady state; plasma membrane receptors, on the other hand, remained fully active over time. This indicates that newly internalized receptors retain their kinase activity but undergo subsequent deactivation. Following exposure of cells to 6 ng/ml insulin, the degree of activation of the insulin receptor kinase was lower in the plasma membrane fraction (24% of the insulin effect at 500 ng/ml) than in the low-density and high-density microsomal membrane fractions (54 and 77%, respectively, of the insulin effect at 500 ng/ml). These results suggest that receptors with an activated kinase are preferentially internalized. We conclude that exposure of adipocytes to insulin causes endocytosis of insulin receptors and activation of insulin receptor kinase, newly internalized receptors are fully active tyrosine kinases but are deactivated as they traverse the intracellular organelles represented by low-density and high-density microsomal membranes, and insulin receptor occupancy, possibly by stimulating phosphorylation and activating the insulin receptor kinase, is important for targeting insulin receptors for internalization.  相似文献   

8.
M Rossato  A Nogara  M Merico  A Ferlin  C Foresta 《Steroids》1999,64(1-2):168-175
Steroid hormones influence cell functions by binding to intracellular receptors and then acting within the nucleus. There is now evidence that steroids affect cell functions also via interaction with plasma membrane receptors in a number of different cell types. In this regard, progesterone appears to be one of the most active steroids. In this paper, we evaluate the effects of progesterone on rat Leydig cell functions, determining variations of ion homeostasis and testosterone production. This steroid was able to effect a depolarization of the plasma membrane that was due to an influx of sodium (Na+) from the external medium since it was absent when extracellular Na+ was iso-osmotically substituted with choline chloride or sucrose. The determination of intracellular sodium concentration ([Na+]i) with the Na+ -sensitive fluorescent dye sodium-benzofuran-isophtalate (SBFI) confirmed these observations. Progesterone did not modify Leydig cell intracellular calcium concentration ([Ca2+]i) at any dose tested. Furthermore, using a cell impermeant progesterone conjugate, we demonstrated that progesterone was able to stimulate Leydig cell steroidogenesis in a dose-dependent manner. The exclusion of calcium (Ca2+) from the extracellular medium did not modify the depolarizing action of progesterone and its steroidogenetic effect while in Na+ -free medium (sucrose supplemented) progesterone-stimulated effects were completely blunted. Finally, using fluorescence microscopy with a fluorescein isothiocyanate-coupled cell impermeant progesterone conjugate, we identified plasma membrane binding sites for progesterone in rat Leydig cells. These results suggest that rat Leydig cells possess progesterone receptors located on the plasma membrane, which when occupied achieves a plasma membrane depolarization, dependent on an influx of Na+ from the external medium, and the subsequent activation of steroidogenesis.  相似文献   

9.
Fractions and subcellular structures were prepared from rat brain homogenate and their purity was assessed using enzyme markers, gamma-aminobutyric acid binding, DNA content, and electron microscopy. Insulin binding was highest on the plasma membrane preparations and approximately 50% less so on brain homogenate crude mitochondrial (P2), myelinated axon, and synaptosome preparations. Very low levels of binding were found on mitochondria and nuclei. Differences in binding between fractions were due to numbers of binding sites, and not variable binding affinity. There was a close relationship between insulin binding and the activity of Na/K ATPase (E.C. 3.6.1.4) in all fractions (r = 0.98). Insulin binding to the P2 was compared with plasma membrane fractions in seven brain regions, and the results demonstrated the same close relationship between insulin binding and plasma membrane content in all regions except hypothalamus. Plasma membrane insulin binding was well represented by the binding on P2 membranes in all regions except hypothalamus and brainstem. It was concluded that insulin binding is distributed evenly over the surface of brain cells and is not increased on nerve endings.  相似文献   

10.
Diphosphoryl lipid A derived from the nontoxic LPS of Rhodobacter sphaeroides (RsDPLA) has been shown to be a powerful LPS antagonist in both human and murine cell lines. In addition, RsDPLA also can protect mice against the lethal effects of toxic LPS. In this study, we complexed both the deep rough LPS from Escherichia coli D31 m4 (ReLPS) and RsDPLA with 5- and 30-nm colloidal gold and compared their binding to the RAW 264.7 cell line by electron microscopy. Both ReLPS and RsDPLA bound to the cells with the following observations. First, binding studies revealed that pretreatment with RsDPLA completely blocked the binding and thus internalization of ReLPS-gold conjugates to these cells at both 37 degrees C and 4 degrees C. Second, ReLPS was internalized via micropinocytosis (noncoated plasma membrane invaginations) involving formation of caveolae-like structures and leading to the formation of micropinocytotic vesicles, macropinocytosis (or phagocytosis), formation of clathrin-coated pits (receptor mediated), and penetration through plasma membrane into cytoplasm. Third, in contrast, RsDPLA was internalized predominantly via macropinocytosis. These studies show for the first time that RsDPLA blocks the binding and thus internalization of LPS as observed by scanning and transmission electron microscopy.  相似文献   

11.
The purpose of the present study was to further characterize the ethanol-induced impairments in hepatic endocytosis. Specifically, we examined the effects of ethanol treatment on receptor-ligand internalization via the coated and noncoated pit pathways. Insulin, epidermal growth factor (EGF) and asialoorosomucoid (ASOR) were used as model ligands to study internalization by isolated hepatocytes. ASOR and EGF are thought to be internalized strictly in coated pit regions of the cell membrane, while insulin may be internalized in both coated and uncoated membrane regions. Ethanol administration for 5-7 weeks decreased internalization of ASOR and EGF while internalization of insulin was unchanged during a single round of endocytosis of surface-bound ligand. Similarly, a more quantitative measure of endocytosis, the endocytic rate constant, was decreased for EGF and ASOR but not for insulin in livers of experimental rats. When endocytosis of Lucifer yellow, a fluorescent dye known to be internalized in the cell by fluid-phase endocytosis was examined, the initial rates of dye uptake were not significantly altered by alcohol administration. These results indicate that ethanol may selectively impair internalization occurring by coated pits while it has a minimal effect on initial uptake of molecules which are internalized by noncoated membrane regions.  相似文献   

12.
The endocytosis and intracellular transport of mannose-6-phosphate conjugated to bovine serum albumin (Man-6-P:BSA) by mouse T-lymphoma cells were investigated in detail using several methods of analysis, both morphological and biochemical. Man-6-P:BSA was labeled with fluorescein or 125I and used to locate both surface and intracellular Man-6-P binding sites by light or electron microscopy, respectively. Incubation of cells with either fluorescent- or 125I-labeled Man-6-P:BSA at 0 degree C revealed a uniform distribution of the Man-6-P binding sites over the cell surface. Competition experiments indicate that the Man-6-P:BSA binding sites on the cell surface are the same receptors that can recognize lysosomal hydrolases. After as little as 1 min incubation at 37 degrees C, endocytosis of Man-6-P binding sites was clearly observed to occur through regions of the plasma membrane and via vesicles that also bound anticlathrin antibody. After a 5-15-min incubation of cells at 37 degrees C, the internalized ligand was detected first in the cis region of the Golgi apparatus and then in the Golgi stacks using both autoradiography and immunocytochemistry to visualize the ligand. The appearance of Man-6-P:BSA in the Golgi region after 15-30 min was confirmed by subcellular fractionation, which demonstrated an accumulation of Man-6-P:BSA in light membrane fractions that corresponded with the Golgi fractions. After a 30-min incubation at 37 degrees C, the internalized Man-6-P binding sites were localized primarily in lysosomal structures whose membrane but not lumen co-stained for acid phosphatase. These results demonstrate a temporal participation of clathrin-containing coated vesicles during the initial endocytosis of Man-6-P binding sites and that one step in the Man-6-P:BSA transport pathway between plasma membrane and the lysosomal structure can involve a transit through the Golgi stacks.  相似文献   

13.
Human HepG2 hepatoma cells express a high number of insulin receptors. Growing cells exhibit 70% of their insulin receptors on the plasma membrane. Moreover, cell-surface insulin receptors form molecular complexes with class I major histocompatibility antigens, as determined by co-immunoprecipitation of the receptors by anti-class I monoclonal antibodies. On exposure to saturating concentrations of insulin, the hormone is rapidly internalized into a Pronase-resistant compartment. Internalization of insulin is accompanied by a rapid (t1/2 = 2-3 min) redistribution of insulin receptors from the cell surface to an intracellular compartment. On removal of insulin from the medium, functional receptors recycle back to the plasma membrane, where they can bind insulin again. With chronic exposure of HepG2 cells to insulin, the initial redistribution of receptors is followed by a slow (t1/2 = 9 h) down-regulation of the receptors. Finally, notwithstanding their interaction at the cell surface, insulin receptors and class I major histocompatibility antigens are internalized at different rates and with independent regulation.  相似文献   

14.
The present studies characterize the turnover of plasma membrane cholesterol in MA-10 Leydig tumour cells. Plasma membrane cholesterol of MA-10 cells was slowly internalized and converted into cholesteryl ester. Low-density lipoprotein (LDL) stimulated, in a dose- and time-dependent fashion, plasma membrane cholesterol conversion into intracellular esters. Stimulation of membrane internalization was not simply the consequence of accelerated uptake of membrane with LDL, since binding and internalization of epidermal growth factor and transferrin had no effect on turnover of plasma membrane cholesterol. The protein of LDL is unimportant as well, since delipidated LDL had no effect on membrane turnover. The action of LDL on cholesterol turnover was explained entirely by its contribution to cholesteryl ester stores. The degree of plasma membrane cholesterol internalization and esterification was directly proportional to the size of cellular ester stores.  相似文献   

15.
Cultured hepatocytes express binding sites for bovine serum amine oxidase on their membrane surfaces as evaluated at the electron microscopic level by using enzyme-gold complexes. Hepatocytes show binding sites as small clusters of gold granules, not bound in a specialized region of the plasma membrane. The binding competition of enzyme-gold ligand to cells was achieved by preincubation with uncoupled bovine serum amine oxidase. In addition, N-acetyl-galactosamine, N-acetyl-glucosamine and Mannose, at the final concentration of 80 mM, partially inhibit the binding.  相似文献   

16.
There is emerging evidence of the utility of virus-like particles (VLPs) as a novel model for the study of receptor-ligand interactions in a native plasma membrane environment. VLPs consist of a viral core protein encapsulated by portions of the cell membrane with membrane proteins and receptors expressed in their native conformation. VLPs can be generated in mammalian cells by transfection with the retroviral core protein (gag). In this study, we used Chinese hamster ovary (CHO T10) cells stably overexpressing the insulin receptor (IR) to generate IR bearing VLPs. The diameter and size uniformity of VLPs were estimated by dynamic light scattering and morphological features examined by scanning electron microscopy. The presence of high affinity IR on VLPs was demonstrated by competitive binding assays (KD: 2.3 ± 0.4 nM, n = 3), which was similar to that on the parental CHO T10 cells (KD: 2.1 ± 0.4 nM, n = 3). We also report that increases or decreases in membrane cholesterol content by treatment with methyl-β-cyclodextrin (MBCD) or cholesterol pre-loaded methyl-β-cyclodextrin (cMBCD), respectively, substantially decreased insulin binding (> 30%) to both VLPs and cells, and we speculate this is due to a change in receptor disposition. We suggest that this novel finding of decreases in insulin binding in response to changes in membrane cholesterol content may largely account for the unexplained decreases in insulin signalling events previously reported elsewhere. Finally, we propose VLPs as a viable membrane model for the study of insulin-IR interactions in a native membrane environment.  相似文献   

17.
Receptor-mediated endocytosis may represent an important mechanism whereby peptide hormones exert their biological effects. The ability of recombinant insulin-like growth factor (IGF)-I to be internalized by cultured cells was evaluated in BRL-3A2 cells, a rat liver-derived cell line which lacks insulin receptors. Since recombinant IGF-I does not bind to the Type II IGF receptor, all specific binding of 125I-IGF-I in BRL-3A2 cells represents binding to the Type I receptor. Exposure of BRL-3A2 cells to IGF-I resulted in a rapid 50% downregulation of Type I IGF receptors. Only one-half of these binding sites were sensitive to treatment with trypsin, a phenomenon which indicates that the peptide and its receptor were internalized after the cells were exposed to IGF-I. In conclusion, these experiments demonstrate that IGF-I can be internalized by cultured cells via the Type I IGF receptor, and suggest that IGF hormone action may be exerted by receptor-mediated endocytosis.  相似文献   

18.
Endocytosis of asialo-glycoproteins in hepatocytes is mediated by a lectin-like receptor with specificity for D-galactose. Early events of receptor-ligand interactions have been studied by ultrastructural analysis. Hepatocytes were isolated from the rat liver by collagenase perfusion and incubated with a galactosylated electron dense marker (gold-Gal-BSA, glactosylated bovine serum albumin adsorbed onto colloidal gold particles). Initial binding of gold-Gal-BSA particles occurs to receptors diffusely distributed at hepatic microvilli of the former space of Disé. No lectin activity was found in membrane areas that had formed in situ the region of hepatic cell contact or bile canaliculi. Microaggregation of receptor-ligand complexes is seen as an early consequence of particle binding. Microaggregates contain 2-5 particles and are located outside coated pits. After prolonged incubation larger clusters are formed, these are found associated with coated membrane areas. It is concluded that at least three steps precede the uptake of galactosylated proteins by hepatocytes. These are: (i) binding of ligand at diffusely distributed binding sites; (ii) local microaggregation of receptor-ligand complexes; (iii) formation of larger clusters and association with coated pits.  相似文献   

19.
We have previously shown that multiple complement (C) channels are required for lysis of a nucleated cell in contrast to the single channel requirement for erythrocytes. To further investigate this multichannel requirement for nucleated cells, we examined the stability of terminal C complexes in the plasma membrane of Ehrlich ascites tumor cells. Ehrlich cells bearing C5b-7 or C5b-8 with or without C9 were incubated at 37 degrees C or 0 degree C for various time intervals before converting the remaining complexes to lytic C5b-9 channels. C5b-7, C5b-8, and C5b-8 in the presence of a limited number of C5b-9 complexes disappeared functionally from the plasma membrane at 37 degrees C, with initial half-lives of 31, 20, and 10 min, respectively. Disappearance of these complexes did not occur at 0 degree C, nor did disappearance occur at 37 degrees C when formed on sheep erythrocytes. The fate of C5b-8 complexes on the surface of Ehrlich cells was traced with colloidal gold particles bound to C5 determinants on C5b-8 with the use of immunoelectron microscopy. Colloidal gold could be seen on the cell surface after specific binding to cells carrying C5b-8 sites at 0 degree C. After incubating these cells at 37 degrees C, gold particles were internalized into the cell continuously via endocytic vesicles. It is postulated that terminal C complexes may stimulate or accelerate the removal of these complexes from the cell surface.  相似文献   

20.
Biochemical and ultrastructural studies of insulin binding and cellular processing by cultured H4IIEC3 hepatoma cells were performed. Insulin binding and intracellular accumulation were rapid and after 30 min at 37 degrees C, 65% of the total cell-associated 125I-insulin was in an acid-stable compartment. Chloroquine had no significant effect on the amount of total cell-associated insulin or the percentage of insulin in the acid-stable compartment or cell-associated insulin degradation under those conditions, but after 60-min incubations, it slightly decreased the rate of dissociation of internalized hormone. Ultrastructural analysis revealed that monomeric ferritin-insulin (Fm-I) initially bound to single or paired receptors on microvilli. Within 5 min occupied insulin receptors microaggregated and migrated to the intervillous cell surface. During the next 5-10 min occupied receptors aggregated into large clusters on the plasma membrane. Large amounts of insulin were internalized by macropinocytosis and the majority of internalized Fm-I was found in phagosomes. Less than 10% of the membrane-bound insulin was associated with pinocytotic invaginations or coated pits and less than 5% of the total cell-associated insulin was found in lysosomes. Chloroquine had no detectable effect on the amount of Fm-I or its distribution among the intracellular organelles. These studies demonstrated that, compared to previous studies with rat adipocytes or 3T3-L1 adipocytes, insulin interalization and intracellular processing in this hepatoma cell were unique. These differences provide further evidence that insulin binding and processing may be controlled by cell-specific mechanisms and that substantial heterogeneity exists in pathways previously presumed to be similar for all cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号