共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels
Bock G Gebhart M Scharinger A Jangsangthong W Busquet P Poggiani C Sartori S Mangoni ME Sinnegger-Brauns MJ Herzig S Striessnig J Koschak A 《The Journal of biological chemistry》2011,286(49):42736-42748
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes. 相似文献
2.
3.
Kristina Griessmeier Hartmut Cuny Katrin R?tzer Oliver Griesbeck Hartmann Harz Martin Biel Christian Wahl-Schott 《The Journal of biological chemistry》2009,284(43):29809-29816
Cav1.4 channels are unique among the high voltage-activated Ca2+ channel family because they completely lack Ca2+-dependent inactivation and display very slow voltage-dependent inactivation. Both properties are of crucial importance in ribbon synapses of retinal photoreceptors and bipolar cells, where sustained Ca2+ influx through Cav1.4 channels is required to couple slow graded changes of the membrane potential with tonic glutamate release. Loss of Cav1.4 function causes severe impairment of retinal circuitry function and has been linked to night blindness in humans and mice. Recently, an inhibitory domain (ICDI: inhibitor of Ca2+-dependent inactivation) in the C-terminal tail of Cav1.4 has been discovered that eliminates Ca2+-dependent inactivation by binding to upstream regulatory motifs within the proximal C terminus. The mechanism underlying the action of ICDI is unclear. It was proposed that ICDI competitively displaces the Ca2+ sensor calmodulin. Alternatively, the ICDI domain and calmodulin may bind to different portions of the C terminus and act independently of each other. In the present study, we used fluorescence resonance energy transfer experiments with genetically engineered cyan fluorescent protein variants to address this issue. Our data indicate that calmodulin is preassociated with the C terminus of Cav1.4 but may be tethered in a different steric orientation as compared with other Ca2+ channels. We also find that calmodulin is important for Cav1.4 function because it increases current density and slows down voltage-dependent inactivation. Our data show that the ICDI domain selectively abolishes Ca2+-dependent inactivation, whereas it does not interfere with other calmodulin effects.Retinal photoreceptors and bipolar cells contain a highly specialized type of synapse designated ribbon synapses. Glutamate release in these synapses is controlled via graded and sustained changes in membrane potential that are maintained throughout the duration of a light stimulus (1, 2). In recent years, it became clear that Cav1.4 L-type Ca2+ channels are the main channel subtype converting these analog input signals into corresponding permanent glutamate release (1, 3–5). In support of this mechanism, mutations in the Cav1.4 gene have been identified in patients suffering from congenital stationary night blindness type 2 and X-linked cone rod dystrophy (6–8). Individuals displaying congenital stationary night blindness type 2 as well as mice deficient in Cav1.4 typically have abnormal electroretinograms that indicate a loss of neurotransmission from the rods to second order bipolar cells, which is attributable to a loss of Cav1.4 (3).Retinal Cav1.4 channels are set apart from other high voltage-activated (HVA)3 Ca2+ channels by their total lack of Ca2+-dependent inactivation (CDI) and their very slow voltage-dependent inactivation (VDI). Recently, we and others discovered an inhibitory domain (ICDI: inhibitor of CDI) in the C-terminal tail of the Cav1.4 channel that eliminates Ca2+-dependent inactivation in this channel by binding to upstream regulatory motifs (9, 10). Importantly, introducing the ICDI into the backbone of Cav1.2 or Cav1.3 almost completely abolishes the CDI of these channels. Contrasting with the clear cut function, the underlying mechanism by which ICDI abolishes CDI remains controversial. It was suggested that ICDI displaces the Ca2+ sensor calmodulin (CaM) from binding to the proximal C terminus (10), suggesting that the binding sites of CaM and ICDI are largely overlapping or allosterically coupled to each other. Alternatively, our own data rather suggested that CaM and the ICDI domain bind to different portions of the proximal C terminus (9). We proposed that the interaction between the ICDI domain and the EF-hand, a motif with a central role for transducing CDI (11–16), switches off CDI without impairing binding of CaM to the channel. In this study, we designed experiments to differentiate between these two models. Here, using FRET in HEK293 cells, we provide evidence that in living cells, CaM is bound to the full-length C terminus of Cav1.4 (i.e. in the presence of ICDI). Furthermore, our data suggest that the steric orientation of the CaM/Cav channel complex differs between Cav1.2 and Cav1.4 channels. We show that CaM preassociation with Cav1.4 controls current density and also affects VDI. Thus, although CaM does not trigger CDI in Cav1.4 as it does in other HVA Ca2+ channels, it is still an important regulator of this channel. 相似文献
4.
Ca(2+)-binding protein-1 (CaBP1) and calmodulin (CaM) are highly related Ca(2+)-binding proteins that directly interact with, and yet differentially regulate, voltage-gated Ca(2+) channels. Whereas CaM enhances inactivation of Ca(2+) currents through Ca(v)1.2 (L-type) Ca(2+) channels, CaBP1 completely prevents this process. How CaBP1 and CaM mediate such opposing effects on Ca(v)1.2 inactivation is unknown. Here, we identified molecular determinants in the alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2) that distinguish the effects of CaBP1 and CaM on inactivation. Although both proteins bind to a well characterized IQ-domain in the cytoplasmic C-terminal domain of alpha(1)1.2, mutations of the IQ-domain that significantly weakened CaM and CaBP1 binding abolished the functional effects of CaM, but not CaBP1. Pulldown binding assays revealed Ca(2+)-independent binding of CaBP1 to the N-terminal domain (NT) of alpha(1)1.2, which was in contrast to Ca(2+)-dependent binding of CaM to this region. Deletion of the NT abolished the effects of CaBP1 in prolonging Ca(v)1.2 Ca(2+) currents, but spared Ca(2+)-dependent inactivation due to CaM. We conclude that the NT and IQ-domains of alpha(1)1.2 mediate functionally distinct interactions with CaBP1 and CaM that promote conformational alterations that either stabilize or inhibit inactivation of Ca(v)1.2. 相似文献
5.
6.
A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. 总被引:15,自引:0,他引:15
D R Hillyard V D Monje I M Mintz B P Bean L Nadasdi J Ramachandran G Miljanich A Azimi-Zoonooz J M McIntosh L J Cruz 《Neuron》1992,9(1):69-77
Voltage-sensitive Ca2+ channels that control neurotransmitter release are blocked by omega-conotoxin (omega-CgTx) GVIA from the marine snail Conus geographus, the most widely used inhibitor of neurotransmitter release. However, many mammalian synapses are omega-CgTx-GVIA insensitive. We describe a new Conus peptide, omega-CgTx-MVIIC, that is an effective inhibitor of omega-CgTx-GVIA-resistant synaptic transmission. Ca2+ channel targets that are inhibited by omega-CgTx-MVIIC but not by omega-CgTx-GVIA include those mediating depolarization-induced 45Ca2+ uptake in rat synaptosome preparations, "P" currents in cerebellar Purkinje cells, and a subset of omega-CgTx-GVIA-resistant currents in CA1 hippocampal pyramidal cells. The characterization of omega-CgTx-MVIIC by a combination of molecular genetics and chemical synthesis defines a general approach for obtaining ligands with novel receptor subtype specificity from Conus. 相似文献
7.
The beta-subunit of voltage-gated Ca(2+) channels plays a dual role in chaperoning the channels to the plasma membrane and modulating their gating. It contains five distinct modular domains/regions, including the variable N- and C-terminus, a conserved Src homology 3 (SH3) domain, a conserved guanylate kinase (GK) domain, and a connecting variable and flexible HOOK region. Recent crystallographic studies revealed a highly conserved interaction between the GK domain and alpha interaction domain (AID), the high-affinity binding site in the pore-forming alpha(1) subunit. Here we show that the AID-GK domain interaction is necessary for beta-subunit-stimulated Ca(2+) channel surface expression and that the GK domain alone can carry out this function. We also examined the role of each region of all four beta-subunit subfamilies in modulating P/Q-type Ca(2+) channel gating and demonstrate that the beta-subunit functions modularly. Our results support a model that the conserved AID-GK domain interaction anchors the beta-subunit to the alpha(1) subunit, enabling alpha(1)-beta pair-specific low-affinity interactions involving the N-terminus and the HOOK region, which confer on each of the four beta-subunit subfamilies its distinctive modulatory properties. 相似文献
8.
Inayoshi A Sugimoto Y Funahashi J Takahashi S Matsubara M Kusaka H 《Life sciences》2011,88(19-20):898-907
AimsBenidipine, a dihydropyridine Ca2+ channel blocker, has been reported to block T-type Ca2+ channels; however, the mechanism underlying this effect was unclear. In this study, we characterized the mechanism responsible for this blocking activity. Furthermore, the blocking activity was compared between two enantiomers of benidipine, (S, S)- and (R, R)-benidipine.Main methodsHuman Cav3.2 (hCav3.2) T-type Ca2+ channels stably expressed in the human embryonic kidney cell line, HEK-293, were studied in whole-cell patch-clamp recordings and Ca2+ mobilization assay.Key findingsIn whole-cell patch-clamp recordings, benidipine blocked hCav3.2 T-type Ca2+ currents elicited by depolarization to a comparable extent as efonidipine. The block was dependent on stimulation frequency and holding potential, but not test potential. Benidipine significantly shifted the steady-state inactivation curve to the hyperpolarizing direction, but had no effect on the activation curve. Benidipine prolonged the recovery from inactivation of hCav3.2 T-type Ca2+ channels without any effect on the kinetics of activation, inactivation, or deactivation. In the Ca2+ mobilization assay, benidipine was more potent than efonidipine in blocking Ca2+ influx through hCav3.2 T-type Ca2+ channels. (S, S)-Benidipine was more potent than (R, R)-benidipine in blocking hCav3.2 T-type Ca2+ currents, but there was no difference in blocking the Ca2+ influx.SignificanceWe have characterized the blocking activity of benidipine against hCav3.2 Ca2+ channels and revealed the difference between the two enantiomers of benidipine. The blocking action of benidipine could be mediated by stabilizing hCav3.2 Ca2+ channels in an inactivated state. 相似文献
9.
Zhang J Berra-Romani R Sinnegger-Brauns MJ Striessnig J Blaustein MP Matteson DR 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H415-H425
Ca(2+) entry via L-type voltage-gated Ca(2+) channels (LVGCs) is a key factor in generating myogenic tone (MT), as dihydropyridines (DHPs) and other LVGC blockers, including Mg(2+), markedly reduce MT. Recent reports suggest, however, that elevated external Mg(2+) concentration and DHPs may also inhibit other Ca(2+)-entry pathways. Here, we explore the contribution of LVGCs to MT in intact, pressurized mesenteric small arteries using mutant mice (DHP(R/R)) expressing functional but DHP-insensitive Ca(v)1.2 channels. In wild-type (WT), but not DHP(R/R), mouse arteries, nifedipine (0.3-1.0 microM) markedly reduced MT and vasoconstriction induced by high external K(+) concentrations ([K(+)](o)), a measure of LVGC-mediated Ca(2+) entry. Blocking MT and high [K(+)](o)-induced vasoconstriction by <1 microM nifedipine in WT but not in DHP(R/R) arteries implies that Ca(2+) entry via Ca(v)1.2 LVGCs is obligatory for MT and that nifedipine inhibits MT exclusively by blocking LVGCs. We also examined the effects of Mg(2+) on MT and LVGCs. High external Mg(2+) concentration (10 mM) blocked MT, slowed the high [K(+)](o)-induced vasoconstrictions, and decreased their amplitude in WT and DHP(R/R) arteries. To verify that these effects of Mg(2+) are due to block of LVGCs, we characterized the effects of extracellular and intracellular Mg(2+) on LVGC currents in isolated mesenteric artery myocytes. DHP-sensitive LVGC currents are inhibited by both external and internal Mg(2+). The results indicate that Mg(2+) relaxes MT by inhibiting Ca(2+) influx through LVGCs. These data provide new information about the central role of Ca(v)1.2 LVGCs in generating and maintaining MT in mouse mesenteric small arteries. 相似文献
10.
EF-hand Ca2+-binding proteins such as calmodulin and CaBP1 have emerged as important regulatory subunits of voltage-gated Ca2+ channels. Here, we show that caldendrin, a variant of CaBP1 enriched in the brain, interacts with and distinctly modulates Cav1.2 (L-type) voltage-gated Ca2+ channels relative to other Ca2+-binding proteins. Caldendrin binds to the C-terminal IQ-domain of the pore-forming alpha1-subunit of Cav1.2 (alpha(1)1.2) and competitively displaces calmodulin and CaBP1 from this site. Compared with CaBP1, caldendrin causes a more modest suppression of Ca2+-dependent inactivation of Cav1.2 through a different subset of molecular determinants. Caldendrin does not bind to the N-terminal domain of alpha11.2, a site that is critical for functional interactions of the channel with CaBP1. Deletion of the N-terminal domain inhibits CaBP1, but spares caldendrin modulation of Cav1.2 inactivation. In contrast, mutations of the IQ-domain abolish physical and functional interactions of caldendrin and Cav1.2, but do not prevent channel modulation by CaBP1. Using antibodies specific for caldendrin and Cav1.2, we show that caldendrin coimmunoprecipitates with Cav1.2 from the brain and colocalizes with Cav1.2 in somatodendritic puncta of cortical neurons in culture. Our findings reveal functional diversity within related Ca2+-binding proteins, which may enhance the specificity of Ca2+ signaling by Cav1.2 channels in different cellular contexts. 相似文献
11.
L-type Ca2+ channels in Ca2+ channelopathies 总被引:3,自引:0,他引:3
Striessnig J Hoda JC Koschak A Zaghetto F Müllner C Sinnegger-Brauns MJ Wild C Watschinger K Trockenbacher A Pelster G 《Biochemical and biophysical research communications》2004,322(4):1341-1346
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases. 相似文献
12.
Wennemuth G Westenbroek RE Xu T Hille B Babcock DF 《The Journal of biological chemistry》2000,275(28):21210-21217
As sperm prepare for fertilization, surface Ca(2+) channels must open to initiate required, Ca(2+)-mediated events. However, the molecular identity and functional properties of sperm Ca(2+) channels remain uncertain. Here, we use rapid local perfusion and single-cell photometry to examine the kinetics of calcium responses of mouse sperm to depolarizing stimuli. The linear rise of intracellular [Ca(2+)] evoked by approximately 10-s applications of an alkaline high [K(+)] medium directly reports activity of voltage-gated Ca(2+) channels. Little response occurs if external Ca(2+) is removed or if external or internal pH is elevated without depolarization. Responses are inhibited 30-40% by 30-100 micrometer Ni(2+) and more completely by 100-300 micrometer Cd(2+). They resist the dihydropyridines nitrendipine and PN200-110, but 1-10 micrometer mibefradil inhibits reversibly. They also resist the venom toxins calciseptine, omega-conotoxin MVIIC, and kurtoxin, but omega-conotoxin GVIA (5 micrometer) inhibits approximately 50%. GVIA also partially blocks transient, low voltage activated Ca(2+) currents of patch-clamped spermatids. Differential sensitivity of sperm responses to Ni(2+) and Cd(2+) and partial blockade by GVIA indicate that depolarization opens at least two types of voltage-gated Ca(2+) channels in epididymal sperm examined prior to capacitation. Involvement of a previously undetected Ca(V)2.2 (N-type) channel, suggested by the action of GVIA, is substantiated by immunodetection of Ca(2+) channel alpha(1B) subunits in sperm and sperm extracts. Resistance to dihydropyridines, calciseptine, MVIIC, and kurtoxin indicates that Ca(V)1, Ca(V)2.1, and Ca(V)3 (L-, P/Q-, and T-type) channels contribute little to this evoked response. Partial sensitivity to 1 micrometer mibefradil and an enhanced sensitivity of the GVIA-resistant component of response to Ni(2+) suggest participation of a Ca(V)2.3 (R-type) channel specified by previously found alpha(1E) subunits. Our examination of depolarization-evoked Ca(2+) entry indicates that mature sperm possess a larger palette of voltage-gated Ca(2+) channels than previously thought. Such diversity may permit specific responses to multiple cues encountered on the path to fertilization. 相似文献
13.
Ca2+-calmodulin-dependent facilitation and Ca2+ inactivation of Ca2+ release-activated Ca2+ channels
Moreau B Straube S Fisher RJ Putney JW Parekh AB 《The Journal of biological chemistry》2005,280(10):8776-8783
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms. 相似文献
14.
Nichols RA Dengler AF Nakagawa EM Bashkin M Paul BT Wu J Khan GM 《The Journal of biological chemistry》2007,282(49):36102-36111
Calcium levels in the presynaptic nerve terminal are altered by several pathways, including voltage-gated Ca(2+) channels, the Na(+)/Ca(2+) exchanger, Ca(2+)-ATPase, and the mitochondria. The influx pathway for homeostatic control of [Ca(2+)](i) in the nerve terminal has been unclear. One approach to detecting the pathway that maintains internal Ca(2+) is to test for activation of Ca(2+) influx following Ca(2+) depletion. Here, we demonstrate that a constitutive influx pathway for Ca(2+) exists in presynaptic terminals to maintain internal Ca(2+) independent of voltage-gated Ca(2+) channels and Na(+)/Ca(2+) exchange, as measured in intact isolated nerve endings from mouse cortex and in intact varicosities in a neuronal cell line using fluorescence spectroscopy and confocal imaging. The Mg(2+) and lanthanide sensitivity of the influx pathway, in addition to its pharmacological and short hairpin RNA sensitivity, and the results of immunostaining for transient receptor potential (TRP) channels indicate the involvement of TRPC channels, possibly TRPC5 and TRPC1. This constitutive Ca(2+) influx pathway likely serves to maintain synaptic function under widely varying levels of synaptic activity. 相似文献
15.
16.
Sua Jeong Ji Seon Shim Seok Kyo Sin Kang-Sik Park Jung-Ha Lee 《Journal of cellular physiology》2023,238(1):210-226
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties. 相似文献
17.
Short-term synaptic plasticity shapes the postsynaptic response to bursts of impulses and is crucial for encoding information in neurons, but the molecular mechanisms are unknown. Here we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels mediated by neuronal Ca(2+) sensor proteins (CaS) induces synaptic plasticity in cultured superior cervical ganglion (SCG) neurons. A mutation of the IQ-like motif in the C terminus that blocks Ca(2+)/CaS-dependent facilitation of the P/Q-type Ca(2+) current markedly reduces facilitation of synaptic transmission. Deletion of the nearby calmodulin-binding domain, which inhibits CaS-dependent inactivation, substantially reduces depression of synaptic transmission. These results demonstrate that residual Ca(2+) in presynaptic terminals can act through CaS-dependent regulation of Ca(V)2.1 channels to induce short-term synaptic facilitation and rapid synaptic depression. Activity-dependent regulation of presynaptic Ca(V)2.1 channels by CaS proteins may therefore be a primary determinant of short-term synaptic plasticity and information-processing in the nervous system. 相似文献
18.
Voltage-dependent L-type Cav1.3 channels have been detected in satellite cells localized to muscle fibers. It was established that the action of carbachol, which activates nicotinic acetylcholine receptors and causes cell membrane to depolarize, resulted in the activation of these channels. In addition, verapamil and amlodipine, selective L-type calcium channel blockers, suppressed extracellular calcium influx into the cytoplasm. It was noted that in a calcium-free medium, carbachol had no influence on the concentration of calcium in the cytoplasm of satellite cells, whereas adrenaline induced calcium efflux from intracellular stores. In addition, calcium influx into the cytoplasm was not suppressed by verapamil and amlodipine under the action of adrenaline and noradrenalin in a medium with calcium, and an ICI-118551 blocker of β2-adrenoreceptros significantly decreased the increase in the concentration of calcium in the cytoplasm. 相似文献
19.
Andreas Krieger Kayalvizhi Radhakrishnan Alexey Pereverzev Siarhei A Siapich Mohammed Banat Marcel A Kamp Jérome Leroy Udo Kl?ckner Jürgen Hescheler Marco Weiergr?ber Toni Schneider 《Cellular physiology and biochemistry》2006,17(3-4):97-110
Multiple types of voltage-activated Ca2+ channels (T, L, N, P, Q, R type) coexist in excitable cells and participate in synaptic differentiation, secretion, transmitter release, and neuronal plasticity. Ca2+ ions entering cells trigger these events through their interaction with the ion channel itself or through Ca2+ binding to target proteins initiating signalling cascades at cytosolic loops of the ion conducting subunit (Cava1). These loops interact with target proteins in a Ca2+-dependent or independent manner. In Cav2.3-containing channels the cytosolic linker between domains II and III confers a novel Ca2+ sensitivity to E-type Ca2+ channels including phorbol ester sensitive signalling via protein kinase C (PKC) in Cav2.3 transfected HEK-293 cells. To understand Ca2+ and phorbol ester mediated activation of Cav2.3 Ca2+ channels, protein interaction partners of the II-III loop were identified. FLAG-tagged II-III - loop of human Cav2.3 was over-expressed in HEK 293 cells, and the molecular chaperone hsp70, which is known to interact with PKC, was identified as a novel functional interaction partner. Immunopurified II-III loop-protein of neuronal and endocrine Cav2.3 splice variants stimulate autophosphorylation of PKCa, leading to the suggestion that hsp70--binding to the II-III loop--may act as an adaptor for Ca2+ dependent targeting of PKC to E-type Ca2+ channels. 相似文献
20.
Prior to hearing onset, spontaneous action potentials activate voltage-gated Cav1.3 Ca2+ channels in mouse inner hair cells (IHCs), which triggers exocytosis of glutamate and excitation of afferent neurons. In mature IHCs, Cav1.3 channels open in response to evoked receptor potentials, causing graded changes in exocytosis required for accurate sound transmission. Developmental alterations in Cav1.3 properties may support distinct roles of Cav1.3 in IHCs in immature and mature IHCs, and have been reported in various species. It is not known whether such changes in Cav1.3 properties occur in mouse IHCs, but this knowledge is necessary for understanding the roles of Cav1.3 in developing and mature IHCs. Here, we describe age-dependent differences in the biophysical properties of Cav1.3 channels in mouse IHCs. In mature IHCs, Cav1.3 channels activate more rapidly and exhibit greater Ca2+-dependent inactivation (CDI) than in immature IHCs. Consistent with the properties of Cav1.3 channels in heterologous expression systems, CDI in mature IHCs is not affected by increasing intracellular Ca2+ buffering strength. However, CDI in immature IHCs is significantly reduced by strong intracellular Ca2+ buffering, which both slows the onset of, and accelerates recovery from, inactivation. These results signify a developmental decline in the sensitivity of CDI to global elevations in Ca2+, which restricts negative feedback regulation of Cav1.3 channels to incoming Ca2+ ions in mature IHCs. Together with faster Cav1.3 activation kinetics, increased reliance of Cav1.3 CDI on local Ca2+ may sharpen presynaptic Ca2+ signals and improve temporal aspects of sound coding in mature IHCs. 相似文献