首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l?1) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m?1 and produced glycolipidic biosurfactants (45 mg l?1). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0–10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 +) and negligible amount of nitrite ion (NO2 ?). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate >> protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.  相似文献   

2.
Thirty Chlorella and 30 Scenedesmus strains grown in nitrogen-stressed conditions (70 mg L?1 N) were analyzed for biomass accumulation, lipid productivity, protein, and fatty acid (FA) composition. Scenedesmus strains produced more biomass (4.02?±?0.73 g L?1) after 14 days in culture compared to Chlorella strains (2.57?±?0.12 g L?1). Protein content decreased and lipid content increased from days 8 to 14 with an increase in triacylglycerol (TAG) accumulation in most strains. By day 14, Scenedesmus strains generally had higher lipid productivity (53.5?±?3.7 mg lipid L?1 day?1) than Chlorella strains (35.1?±?2.8 mg lipid L?1 day?1) with the lipids consisting mainly of C16–18 TAGs. Scenedesmus strains generally had a more suitable FA profile with higher amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs) and a smaller polyunsaturated fatty acid (PUFA) component. Chlorella strains had a larger PUFA component and smaller MUFA component. The general trend in the FA composition of Chlorella strains was oleic > palmitic > α-linolenic = linoleic > eicosenoic > heptadecenoic > stearic acid. For Scenedesmus strains, the general trend was oleic > palmitic > linoleic > α-linolenic > stearic > eicosenoic > palmitoleic > heptadecenoic acid. The most promising strains with the highest lipid productivity and most suitable FA profiles were Scenedesmus sp. MACC 401, Scenedesmus soli MACC 721, and Scenedesmus ecornis MACC 714. Although Chlorella sp. MACC 519 had lower lipid productivity, the FA profile was good with a lower PUFA component compared to the other Chlorella strains analyzed and a low linolenic acid concentration.  相似文献   

3.
The nitrilase from Rhodococcus sp. CCZU10-1 catalyses the hydrolysis of dinitriles to acids without the formation of amides and cyanocarboxylic acids. It was induced by benzonitrile and its analogues (tetrachloroterephthalonitrile > ε-caprolactam > benzonitrile > phenylacetonitrile), and had activity towards aromatic nitriles (terephthalonitrile > tetrachloroterephthalonitrile > isophthalonitrile > tetrachloroisophthalonitrile > tetrafluoroterephthalonitrile > benzonitrile). After the optimization, the highest nitrilase induction [311 U/(g DCW)] was achieved with tetrachloroterephthalonitrile (1 mM) in the medium after 24 h at 30 °C after optimum enzyme activity was at pH 6.8 and at 30 °C. Efficient biocatalyst recycling was achieved by cell immobilization in calcium alginate, with a product-to-biocatalyst ratios of 776 g terephthalic acid/g DCW and 630 g isophthalic acid/g DCW.  相似文献   

4.
Many reports describe the decolourization of dyes by fungal enzymes. However, these enzymes do not contribute to dye mineralization but only to its biotransformation into less coloured or colourless molecules persisting in solution. Therefore, it is essential to analyse the identity of the metabolites produced during enzymatic treatments and its biodegradation into an appropriate system. The present work examines the decolourization/detoxification of a simulated effluent (containing Acid Blue 74) by fungal enzymes and proposes a secondary treatment using an anaerobic system to improve the enzymatic decolourization through the complete mineralization of the dye. Ligninolytic enzymes were produced by solid culture using the thermo-tolerant fungus Fomes sp. EUM1. The enzymes produced showed a high rate of decolourization (>95 % in 5 h) and were stable at elevated temperature (40 °C) and ionic strength (NaCl, 50 mM). Isatin-5-sulphonic acid was identified via 1H-NMR as oxidation product; tests using Daphnia magna revealed the non-toxic nature of this compound. To improve the enzymatic degradation and avoid coupling reactions between the oxidation products, the effluent was subjected to an anaerobic (methanogenic) treatment, which achieved high mineralization efficiencies (>85 %). To confirm the mineralization of isatin-5-sulphonic acid, a specific degradation study, which has not been reported before, with this single compound was conducted under the same conditions; the results showed high removal efficiencies (86 %) with methane production as evidence of mineralization. These results showed the applicability of an anaerobic methanogenic system to improve the enzymatic decolourization/detoxification of Acid Blue 74 and achieve its complete mineralization.  相似文献   

5.
A lab-scale anaerobic filter process was operated for the treatment of purified terephthalic acid (PTA) wastewater, and the influences of organic loading disturbances on the process performance were investigated. After about 15 month operation, the COD removal efficiency was maintained at 79% under the volumetric loading rate of 5.05 kg-COD/m3/d and the hydraulic retention time (HRT) of 50 h. Interestingly, this performance could be further enhanced over 85% by applying a step-increase/decrease of the HRT, which was mainly due to the increased p-toluate degradation. In the shock loading tests of four major pollutants (benzoate, acetate, terephthalate and p-toluate), it was found that the overall process performance was adversely affected by all the shock loadings, indicating that the syntrophic microbial consortium involved in the PTA wastewater treatment is highly sensitive to the organic loading disturbances. The complex inhibition effects of the benzoate and acetate on the terephthalate and p-toluate degradations were mainly responsible for this sensitivity.  相似文献   

6.
Enantioselective oxidation of racemic phenyl-1,2-ethanediol into (R)-(?)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1 was demonstrated. It was found that optically active (R)-(?)-mandelic acid (e.e.p?>?99.9 %) is produced leaving the other enantiomer (S)-(+)-phenyl-1,2-ethanediol intact. Using fed-batch method, a total of 172.9 mM (R)-(?)-mandelic acid accumulated in the reaction mixture after the seventh feed. Moreover, oxidation of phenyl-1,2-ethanediol using calcium alginate-entrapped resting cells was carried out in the aqueous system, and efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 27.94 g (R)-(?)-mandelic acid g?1 dry cell weight cell after 16 cycles of repeated use.  相似文献   

7.
Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced d-lactic acid (DLA) at 12.5 g l?1 in a bioreactor. The values of Leudking–Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l?1) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l?1 with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.  相似文献   

8.
This research aimed to evaluate the capacity of acid-resistant purple nonsulfur bacteria, Rhodopseudomonas palustris strains VNW02, TLS06, VNW64, and VNS89, to resist Al3+ and Fe2+ and to investigate their potential to remove both metals from aqueous solutions using exopolymeric substances (EPS) and biomasses. Based on median inhibition concentration (IC50), strain VNW64 was the most resistant to both metals under conditions of aerobic dark and microaerobic light; however, strain TLS06 was more resistant to Al3+ under aerobic dark conditions. High metal concentrations resulted in an altered cellular morphology, particularly for strain TLS06. Metal accumulation in all tested PNSB under both incubating conditions as individual Al3+ or Fe2+ was in the order of cell wall?>?cytoplasm?>?cell membrane. This was also found in a mixed metal set only under conditions of aerobic dark as microaerobic light was in the degree of cytoplasm?>?cell wall?>?cell membrane. Of all strains tested, EPS from strain VNW64 had the lowest carbohydrate and the highest protein contents. Metal biosorption under both incubating conditions, EPS produced by strains VNW64 and TLS06, achieved greater removal (80 mg Al3+ L?1 and/or 300 mg Fe2+ L?1) than their biomasses. Additionally, strain VNW64 had a higher removal efficiency compared to strain TLS06. Based on the alteration in cellular morphology, including biosorption and bioaccumulation mechanisms, R. palustris strains VNW64 and TLS06 demonstrated their resistance to metal toxicity. Hence, they may have great potential for ameliorating the toxicity of Al3+ and Fe2+ in acid sulfate soils for rice cultivation.  相似文献   

9.
The objective of this work was to assess and compare the removal efficiency of paracetamol and salicylic acid from aqueous medium by a microalgae-based treatment, using either Chlorella vulgaris or Tetradesmus obliquus. Moreover, considering microalgae application in wastewater treatment, the influence of these pharmaceuticals in the algal nutrient removal capacity was evaluated. The removal of paracetamol by T. obliquus (>40 %) was larger than by C. vulgaris (>21 %) in batch culture, and this was also observed for salicylic acid (>93 % by T. obliquus and >25 % by C. vulgaris). Both strains removed nutrients (phosphate and nitrate) almost completely by the end of the batch culture, but T. obliquus showed the highest efficiency at the steady state conditions of the semicontinuous culture. In spite of this, under the flocculants here tested, the efficiency in the recovery of biomass was much higher for C. vulgaris. These results highlight the importance of strain selection in the application of microalgae for wastewater treatment and, particularly, for the removal of pharmaceuticals.  相似文献   

10.
The clinical use of a bioartificial liver (BAL) device strongly depends on the development of human liver cell lines. The aim of this study was to establish and assess the potential use of the stable HepG2 cell line expressing human augmenter of liver regeneration (hALR). The cDNA encoding hALR protein was inserted into pcDNA3.1 to generate pcDNA3.1/hALR, following which pcDNA3.1/hALR was transfected to HepG2 to establish a cell line that stably expressed hALR (HepG2 hALR). A total of 800 million HepG2 hALR cells were loaded into laboratory-scale BAL bioreactors and cultured for 4 days, during which time the parameters of hepatocyte-specific function and general metabolism were determined. The cell line that stably expressed human ALR was successfully established. The expression of recombinant hALR was higher in the HepG2 hALR cell line than in the HepG2 cell line based on immunofluorescence and immunoblot assays. In samples removed from the BAL bioreactor on day 4, compared to HepG2 cells, HepG2 hALR cells produced significantly more alpha-fetoprotein (127.3 %; P < 0.05) and urea (128.8 %; P < 0.05) and eliminated more glucose (135.7 %; P < 0.05); the level of human albumin was also higher (117 %) in HepG2 hALR cells, but the difference was not significant (P > 0.05). After 24 h of culture, the mean lidocaine removal rate was 65.1 and 57.3 % in culture supernatants of HepG2 hALR and HepG2 cell lines, respectively (P < 0.01). Based on these results, we conclude that HepG2 hALR cells showed liver-specific functionality when cultured inside the bioreactor and would therefore be a potential cell source for BAL.  相似文献   

11.
Microalgae have been used to remove nitrogen, phosphorus, and chemical oxygen demand (COD) from brewery wastewater (BWW). The microalga Scenedesmus obliquus was grown on BWW, using bubble column photobioreactors that operated under batch and continuous regimes. For the first time, the cell physiological status cell membrane integrity and enzymatic activity was monitored during the microalgae based BWW treatment, using flow cytometry. All the cultivations batch and continuous displayed a proportion of cells with intact membrane >?87%, although the continuous cultivations displayed a lower proportion of cells with enzymatic activity (20–40%) than the batch cultivations (97%). The dilution rate of 0.26 day?1 was the most favorable condition, since the microalgae cultivation attained the maximum biomass productivity (0.2 g ash-free dry weight day?1) and the total nitrogen and COD removal rates were the highest (97 and 74%, respectively), while the phosphorous removal rate was the third (23%).  相似文献   

12.
The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1–1.9 U mg?1 dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30°C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile ? chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92–100, 70–90 and 30–51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.  相似文献   

13.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

14.
The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1–100 mg L?1, and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography–mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.  相似文献   

15.
The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m3 digester produced biogas with 57 % methane, and chemical oxygen demand removal of 54 %. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93 % of the clones and 76 % of the pyrotags. Of the Firmicutes, class Clostridia (52 % pyrotags) was most abundant followed by class Bacilli (13 % pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97 % minimum similarity level. Fifteen OTUs were dominant (≥2 % abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (<0.5 % abundance), 75 % were Firmicutes. The dominant methanogen was Methanothermobacter which has hydrogenotrophic metabolism, and accounted for >99 % of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.  相似文献   

16.
The hydrolytic activity of a recombinant β-glycosidase from Dictyoglomus turgidum that specifically hydrolyzed the xylose at the C-6 position and the glucose in protopanaxatriol (PPT)-type ginsenosides followed the order Rf > Rg1 > Re > R1 > Rh1 > R2. The production of aglycone protopanaxatriol (APPT) from ginsenoside Rf was optimal at pH 6.0, 80 °C, 1 mg ml?1 Rf, and 10.6 U ml?1 enzyme. Under these conditions, D. turgidum β-glycosidase converted ginsenoside R1 to APPT with a molar conversion yield of 75.6 % and a productivity of 15 mg l?1 h?1 after 24 h by the transformation pathway of R1 → R2 → Rh1 → APPT, whereas the complete conversion of ginsenosides Rf and Rg1 to APPT was achieved with a productivity of 1,515 mg l?1 h?1 after 6.6 h by the pathways of Rf → Rh1 → APPT and Rg1 → Rh1 → APPT, respectively. In addition, D. turgidum β-glycosidase produced 0.54 mg ml?1 APPT from 2.29 mg ml?1 PPT-type ginsenosides of Panax ginseng root extract after 24 h, with a molar conversion yield of 43.2 % and a productivity of 23 mg l?1 h?1, and 0.62 mg ml?1 APPT from 1.35 mg ml?1 PPT-type ginsenosides of Panax notoginseng root extract after 20 h, with a molar conversion yield of 81.2 % and a productivity of 31 mg l?1 h?1. This is the first report on the APPT production from ginseng root extract. Moreover, the concentrations, yields, and productivities of APPT achieved in the present study are the highest reported to date.  相似文献   

17.
Heavy metals have detrimental impacts on the health of organisms including human beings. Wetlands are economical, natural alternatives for the removal of heavy metals from the environment and macrophytes play a pivotal role in this direction, though they vary in their potential to do so. Heavy metal accumulation capability of two dominant species (Ceratophyllum demersum and Potamogeton natans) in a Kashmir Himalayan Ramsar site was studied. The accumulation of the different metals in P. natans was in the order of Al > Mn > Pb > Cu > Zn > Ni > Co > Cr > Cd, while in C. demersum it was Al > Mn > Zn > Co > Cu > Pb > Cr > Ni > Cd. In C. demersum the highest bioconcentration factor (BCF) was obtained for Co (3616) and Mn (3589) while in P. natans the highest BCF corresponded to Cd (1027). Overall PotamogetonCeratophyllum combination may provide a useful mix for Co, Mn and Cd removal from contaminated sites. The management implications of these results are briefly discussed.  相似文献   

18.
Common reed (Phragmites australis (Cav.) Trin. ex Steud.) plants were harvested from four natural water ecosystems of the Bogdanka river catchment (Poznań, Poland) four times throughout the 2014 vegetative season. Over the year, average metal contents followed different decreasing trends according to the analyzed tissue: Zn > Cu ≈ Pb > Cd (rhizomes) and Zn > Pb > Cu > Cd (leaves), and mean translocation ratios (leaves/rhizomes) were found as follows: 0.93, 0.70, 0.65, 0.40 for Zn, Pb, Cd and Cu, respectively. Metal content increased gradually during the growing season, and in the case of Cu, Cd and Pb exceeded the upper limit of average concentration detected in plants from natural ecosystems. However, the content of salicylic acid did not follow the increase of metal accumulation. In rhizomes, the highest production of the metabolite was observed in May and reached 324 ng g?1 fresh weight (FW) (mean value). Afterwards, a significant drop to 50 ng g?1 FW was observed. Simultaneously, the highest values of total salicylic acid in P. australis leaves were observed in July and accompanied the intensive development of the aboveground biomass of the plant (11.3 µg g?1 FW–mean value). Subsequently, its content in leaves showed a significant decrease down to 2.1 µg g?1 FW in November. Multivariate regression analysis revealed significant interactions between analyzed metals influencing the plant response to metal-derived stress. Cu and Zn showed antagonistic properties considering their uptake and the induction of salicylic acid biosynthesis, whereas non-essential metals (Pb and Cd) acted similarly and stimulated the formation of salicylic acid glucoside.  相似文献   

19.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

20.
Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5?±?3.8 μg CH4 g?1 building material h?1) and low (1.7?±?0.4 μg CH4 g?1 building material h?1) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2?±?10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号