首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The guanine deaminase cypin (cytosolic PSD-95 interactor) binds to PSD-95 (postsynaptic density protein 95) and regulates dendrite branching by promoting microtubule polymerization. Here, we identify a novel short isoform of cypin, termed cypinS, which is expressed in mouse and human, but not rat, tissues. Cypin and cypinS mRNA and protein levels peak at P7 and P14 in the mouse brain, suggesting a role for these isoforms during development. Interestingly, although cypinS lacks guanine deaminase activity, overexpression of cypinS increases dendrite branching. This increase occurs further away from soma than do increases resulting from overexpression of cypin. In contrast, overexpression of cypin, but not cypinS, decreases dendritic spine density and maturity. This suggests that changes to spines, but not to dendrites, may be dependent on guanine deaminase activity. Furthermore, overexpression of either cypin or cypinS increases miniature excitatory postsynaptic current (mEPSC) frequency, pointing to a presynaptic role for both isoforms. Interestingly, overexpression of cypinS results in a significantly greater increase in frequency than does overexpression of cypin. Thus, cypin and cypinS play distinct roles in neuronal development.  相似文献   

2.
Temporal and spatial assembly of signal transduction machinery determines dendrite branch patterning, a process crucial for proper synaptic transmission. Our laboratory previously cloned and characterized cypin, a protein that decreases PSD-95 family member localization and regulates dendrite number. Cypin contains zinc binding, collapsin response mediator protein (CRMP) homology, and PSD-95, Discs large, zona occludens-1 binding domains. Both the zinc binding and CRMP homology domains are needed for dendrite patterning. In addition, cypin binds tubulin via its CRMP homology domain to promote microtubule assembly. Using a yeast two-hybrid screen of a rat brain cDNA library with cypin lacking the carboxyl terminal eight amino acids as bait, we identified snapin as a cypin binding partner. Here, we show by affinity chromatography and coimmunoprecipitation that the carboxyl-terminal coiled-coil domain (H2) of snapin is required for cypin binding. In addition, snapin binds to cypin's CRMP homology domain, which is where tubulin binds. We also show that snapin competes with tubulin for binding to cypin, resulting in decreased microtubule assembly. Subsequently, overexpression of snapin in primary cultures of hippocampal neurons results in decreased primary dendrites present on these neurons and increased probability of branching. Together, our data suggest that snapin regulates dendrite number in developing neurons by modulating cypin-promoted microtubule assembly.  相似文献   

3.
Guanine deaminase (GDA; cypin) is an important metalloenzyme that processes the first step in purine catabolism, converting guanine to xanthine by hydrolytic deamination. In higher eukaryotes, GDA also plays an important role in the development of neuronal morphology by regulating dendritic arborization. In addition to its role in the maturing brain, GDA is thought to be involved in proper liver function since increased levels of GDA activity have been correlated with liver disease and transplant rejection. Although mammalian GDA is an attractive and potential drug target for treatment of both liver diseases and cognitive disorders, prospective novel inhibitors and/or activators of this enzyme have not been actively pursued. In this study, we employed the combination of protein structure analysis and experimental kinetic studies to seek novel potential ligands for human guanine deaminase. Using virtual screening and biochemical analysis, we identified common small molecule compounds that demonstrate a higher binding affinity to GDA than does guanine. In vitro analysis demonstrates that these compounds inhibit guanine deamination, and more surprisingly, affect GDA (cypin)-mediated microtubule assembly. The results in this study provide evidence that an in silico drug discovery strategy coupled with in vitro validation assays can be successfully implemented to discover compounds that may possess therapeutic value for the treatment of diseases and disorders where GDA activity is abnormal.  相似文献   

4.
The kinase noncatalytic C-lobe domain (KIND) is a putative protein-protein interaction module. Four KIND-containing proteins, Spir-2 (actin-nuclear factor), PTPN13 (protein tyrosine phosphatase), FRMPD2 (scaffold protein) and very-KIND (v-KIND) (brain-specific Ras guanine nucleotide exchange factor), have been identified to date. Uniquely, v-KIND has two KINDs (i.e. KIND1 and KIND2), whereas the other three proteins have only one. The functional role of KIND, however, remains unclear. We previously demonstrated that v-KIND interacts with the high-molecular weight microtubule-associated protein 2 (MAP2), a dendritic microtubule-associated protein, leading to negative regulation of neuronal dendrite growth. In the present study, we analyzed the structure-function relationships of the v-KIND-MAP2 interaction by generating a series of mutant constructs. The interaction with endogenous MAP2 in mouse cerebellar granule cells was specific to v-KIND KIND2, but not KIND1, and was not observed for the KINDs from other KIND-containing proteins. The binding core modules critical for the v-KIND-MAP2 interaction were defined within 32 residues of the mouse v-KIND KIND2 and 43 residues of the mouse MAP2 central domain. Three Leu residues at amino acid positions 461, 474 and 477 in the MAP2-binding core module of KIND2 contributed to the interaction. The MAP2-binding core module itself promoted dendrite branching as a dominant-negative regulator of v-KIND in hippocampal neurons. The results reported in the present study demonstrate the structural and functional determinant underlying the v-KIND-MAP2 interaction that controls dendrite arborization patterns.  相似文献   

5.
Guanine deaminase (GDA; guanase) is a ubiquitous enzyme that catalyzes the first step of purine metabolism by hydrolytic deamination of guanine, resulting in the production of xanthine. This hydrolase subfamily member plays an essential role in maintaining homeostasis of cellular triphosphate nucleotides for energy, signal transduction pathways, and nitrogen sources. In mammals, GDA protein levels can play a role in neuronal development by regulating dendritic arborization. We previously demonstrated that the most abundant alternative splice form of GDA in mammals, termed cypin (cytosolic PSD-95 interactor), interacts with postsynaptic density proteins, regulates microtubule polymerization, and increases dendrite number. Since purine metabolism and dendrite development were previously thought to be independent cellular processes, this multifunctional protein serves as a new target for the treatment of cognitive disorders characterized by aberrant neuronal morphology and purine metabolism. Although the enzymatic activity of GDA has been conserved during evolution from prokaryotes to higher eukaryotes, a detailed evolutionary assessment of the principal domains in GDA proteins has not yet been put forward. In this study, we perform a complete evolutionary analysis of the full-length sequences and the principal domains in guanine deaminases. Furthermore, we reconstruct the molecular phylogeny of guanine deaminases with neighbor-joining, maximum-likelihood, and UPGMA methods of phylogenetic inference. This study can act as a model whereby a universal housekeeping enzyme may be adapted to act also as a key regulator of a developmental process.  相似文献   

6.
Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell‐intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system‐enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1‐deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF‐induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.  相似文献   

7.
Guanine deaminase, a key enzyme in the nucleotide metabolism, catalyzes the hydrolytic deamination of guanine into xanthine. The crystal structure of the 156-residue guanine deaminase from Bacillus subtilis has been solved at 1.17-A resolution. Unexpectedly, the C-terminal segment is swapped to form an intersubunit active site and an intertwined dimer with an extensive interface of 3900 A(2) per monomer. The essential zinc ion is ligated by a water molecule together with His(53), Cys(83), and Cys(86). A transition state analog was modeled into the active site cavity based on the tightly bound imidazole and water molecules, allowing identification of the conserved deamination mechanism and specific substrate recognition by Asp(114) and Tyr(156'). The closed conformation also reveals that substrate binding seals the active site entrance, which is controlled by the C-terminal tail. Therefore, the domain swapping has not only facilitated the dimerization but has also ensured specific substrate recognition. Finally, a detailed structural comparison of the cytidine deaminase superfamily illustrates the functional versatility of the divergent active sites found in the guanine, cytosine, and cytidine deaminases and suggests putative specific substrate-interacting residues for other members such as dCMP deaminases.  相似文献   

8.
The regulation of cytoskeletal components in the dendritic shaft core is critical for dendrite elongation and branching. Here, we report that a brain-specific Ras guanine nucleotide exchange factor (RasGEF) carrying two kinase non-catalytic C-lobe domains (KINDs), very-KIND (v-KIND), regulates microtubule-associated protein 2 (MAP2). v-KIND is expressed in developing mouse brain, predominantly in the cerebellar granule cells. v-KIND not only activates Ras small GTPases via the C-terminal RasGEF domain, but also specifically binds to MAP2 via the second KIND domain (KIND2), leading to threonine phosphorylation of MAP2. v-KIND overexpression suppresses dendritic extension and branching of hippocampal neurons and cerebellar granule cells, whereas knockdown of endogenous v-KIND expression promotes dendrite growth. These findings suggest that v-KIND mediates a signaling pathway that links Ras and MAP2 to control dendrite growth.  相似文献   

9.
The amyloid beta-peptide (Abeta) is a principal component of insoluble amyloid plaques which are characteristic neuropathological features of Alzheimer's disease. Abeta also exists as a normal soluble protein that undergoes a pathogenic transition to an aggregated, fibrous form. This transition can be affected by extraneous proteinaceous and nonproteinaceous elements, such as zinc ions, which may promote aggregation and/or stabilization of the fibrils. Protein chelation of zinc is typically mediated by histidines, cysteines and carboxylates. Previous studies have demonstrated that the Abeta-Zn2+ binding site is localized within residues 6-28 and that histidines may serve as the principal sites of interaction. To localize key residues within this region, a series of Abeta peptides (residues 1-28) were synthesized that contained systematic His/Ala substitutions. Circular dichroism and electron microscopy were used to monitor the effects of Zn2+ on the peptide beta-sheet conformation and fibril aggregation. Our results indicate that substitution of either His13 or His14 but not His6 eliminates the zinc-mediated effects. These observations indicate a specific zinc binding site within Abeta that involves these central histidine residues.  相似文献   

10.
11.
Postsynaptic density 95 (PSD-95/SAP-90) is a membrane associated guanylate kinase (GK) PDZ protein that scaffolds glutamate receptors and associated signaling networks at excitatory synapses. Affinity chromatography identifies cypin as a major PSD-95-binding protein in brain extracts. Cypin is homologous to a family of hydrolytic bacterial enzymes and shares some similarity with collapsin response mediator protein (CRMP), a cytoplasmic mediator of semaphorin III signalling. Cypin is discretely expressed in neurons and is polarized to basal membranes in intestinal epithelial cells. Overexpression of cypin in hippocampal neurons specifically perturbs postsynaptic trafficking of PSD-95 and SAP-102, an effect not produced by overexpression of other PDZ ligands. In fact, PSD-95 can induce postsynaptic clustering of an otherwise diffusely localized K+ channel, Kv1.4. By regulating postsynaptic protein sorting, cypin may influence synaptic development and plasticity.  相似文献   

12.
The development of a highly branched dendritic tree is essential for the establishment of functional neuronal connections. The evolutionarily conserved immunoglobulin superfamily member, the protein dendrite arborization and synapse maturation 1 (Dasm-1) is thought to play a critical role in dendrite formation of dissociated hippocampal neurons. RNA interference-mediated Dasm-1 knockdown was previously shown to impair dendrite, but not axonal, outgrowth and branching (S. H. Shi, D. N. Cox, D. Wang, L. Y. Jan, and Y. N. Jan, Proc. Natl. Acad. Sci. USA 101:13341-13345, 2004). Here, we report the generation and analysis of Dasm-1 null mice. We find that genetic ablation of Dasm-1 does not interfere with hippocampal dendrite growth and branching in vitro and in vivo. Moreover, the absence of Dasm-1 does not affect the modulation of dendritic outgrowth induced by brain-derived neurotrophic factor. Importantly, the previously observed impairment in dendrite growth after Dasm-1 knockdown is also observed when the Dasm-1 knockdown is performed in cultured hippocampal neurons from Dasm-1 null mice. These findings indicate that the dendrite arborization phenotype was caused by off-target effects and that Dasm-1 is dispensable for hippocampal dendrite arborization.  相似文献   

13.
The role of the HELLGH (residues 450-455) motif in the sequence of rat dipeptidyl peptidase III (EC 3.4.14.4) was investigated by replacing Glu451 with an alanine or an aspartic acid residue and by replacing His450 and His455 with a tyrosine residue by site-directed mutagenesis. Mutated cDNAs were expressed three or four times in Escherichia coli, and the resulting proteins were purified to apparent homogeneity. None of the expressed mutated proteins exhibited DPP III activity. The mutants of Glu451 contained 1 mol of zinc per mole of protein, but mutants His450 and His455 did not contain significant amounts of zinc as determined by atomic absorption spectrometry. The Leu453-deleted enzyme (having the zinc aminopeptidase motif HExxH-18-E) had almost the same order of binding affinity (for Arg-Arg-2-naphthylamide) as the wild-type enzyme, but the specificity constant was about 10%. These results provide evidence that the suitable number of amino acids included between Glu451 and His455 is three residues for the enzyme activity and confirm that residues His450, His455, and Glu451 are involved in zinc coordination and catalytic activity.  相似文献   

14.
15.
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.  相似文献   

16.
Zinc metallopeptidases are ubiquitous enzymes with diverse cellular functions that can be found in most organisms. Leukotriene A4 hydrolase (LTA4H; E.C. 3.3.2.6) is an unusual zinc metallopeptidase of the M1 family that also possesses an epoxide hydrolase activity; however, the role of its peptidase activity remains unknown. To further characterize the peptidase activity of LTA4H and other closely related metallopeptidases, a multiple sequence alignment and predicted structure were used to target three amino acid residues of yeast LTA4H for mutagenesis: Asn362, Trp365, and Asp399. Although mutating Trp365 and Asp399 had little effect on catalysis, altering Asn362 had varying effects on catalysis, depending on the replacement residue. Mutation of Asn362 to glutamine (N362Q) caused minor catalytic defects, while mutation to leucine (N362L) or glutamate (N362E) caused large reductions in activity. Both N362L and N362E also exhibited an altered pH dependence of catalysis, reduced chloride activation, and reduced zinc affinity and content, indicating that Asn362 may interact with the nearby zinc coordinating residue His344, and possibly with Glu363 as well, to polarize and/or orient these residues.  相似文献   

17.
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons.  相似文献   

18.
The DNA-binding domain of the glucocorticoid receptor contains two zinc ions which are important for the structure and function of the protein. The zinc ions are tetrahedrally coordinated by cysteine residues within the DNA-binding domain. The DNA-binding domain of the glucocorticoid receptor, as well as of the other nuclear hormone receptors, contains nine highly conserved cysteine residues. It has not been clearly established which of these nine cysteine residues are involved in the coordination of zinc. Two models have been proposed for the zinc coordination scheme. We present evidence in favour of the model which excludes the most C-terminal cysteine residue (Cys-481 of the human glucocorticoid receptor) from the zinc coordination scheme. Mutation of this residue in the context of the glucocorticoid receptor DNA-binding domain expressed in E. coli does not significantly reduce the structural integrity of the protein or its DNA-binding properties. These in vitro results are also confirmed by in vivo transactivation assays in yeast.  相似文献   

19.
The crystal structures of CsGST in two different space groups revealed that Asp26 and His79 coordinate a zinc ion. In one space group, His46 of an adjacent molecule participates in the coordination within 2.0 Å. In the other space group, Asp26, His79 and a water molecule coordinate a zinc ion. The CsGST–D26H structure showed that four histidine residues – His26 and His79 from one molecule and the same residues from a symmetry-related neighboring molecule – coordinate a zinc ion. The coordinated zinc ions are located between two molecules and mediate molecular contacts within the crystal.  相似文献   

20.
P2X receptors are ATP-gated ion channels made up of three similar or identical subunits. It is unknown whether ligand binding is intersubunit or intrasubunit, either for agonists or for allosteric modulators. Zinc binds to rat P2X2 receptors and acts as an allosteric modulator, potentiating channel opening. To probe the location of this zinc binding site, P2X2 receptors bearing mutations of the histidines at positions 120 and 213 were expressed in Xenopus oocytes. Studies of H120C and H213C mutants produced five lines of evidence consistent with the hypothesis that the residues in these positions bind zinc. Mixing of subunits containing the H120A or H213A mutation generated receptors that showed zinc potentiation, even though neither of these mutant receptors showed zinc potentiation on its own. Furthermore, expression of trimeric concatamers with His --> Ala mutations at some but not all six positions showed that zinc potentiation correlated with the number of intersubunit histidine pairs. These results indicate that zinc potentiation requires an interaction across a subunit interface. Expression of the H120C/H213C double mutant resulted in the formation of ectopic disulfide bonds that could be detected by changes in the physiological properties of the receptors after treatment with reducing and oxidizing agents. Immunoblot analysis of H120C/H213C protein separated under nonreducing conditions demonstrated that the ectopic bonds were between adjacent subunits. Taken together, these data indicate that His120 and His213 sit close to each other across the interface between subunits and are likely to be key components of the zinc binding site in P2X2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号