首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of culture conditions on the extent of Escherichia coli O157:H7 attaching-effacing (A/E) adherence in an adult bovine large intestinal mucosal explant model were assessed by three different morphometric methods. Measurement of the percent of tissue sections with A/E adherence and the number of foci of A/E adherence mm(-1) of surface epithelium was more sensitive than measurement of the percent of surface epithelium with A/E adherent bacteria for detection of treatment effects. Culture of bacterial inoculum in tryptic soy broth, incubation of explants in 5% CO(2), and rocking of explants on a platform rocker at 18 cycles min(-1) provided optimal conditions for A/E adherence. In future studies, the model may be used for preliminary testing of intervention strategies aimed at reduction of E. coli O157:H7 intestinal colonization of cattle.  相似文献   

2.
Gallbladders and rectal contents were collected from cattle (n=933) at slaughter to determine whether the gallbladder harbors Escherichia coli O157:H7. Both gallbladder mucosal swabs and homogenized mucosal tissues were used for isolation. Only five gallbladders (0.54%) were positive for E. coli O157:H7. Fecal prevalence averaged 7.1%; however, none of the cattle that had E. coli O157:H7 in the gallbladder was positive for E. coli O157:H7 in feces. Therefore, the gallbladder does not appear to be a common site of colonization for E. coli O157:H7 in beef cattle.  相似文献   

3.
Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening complications. Because healthy cattle are reservoirs for the bacterium, ruminant infection models have applications in analyzing the relationship between cattle and this human pathogen and in testing interventions to reduce or prevent bovine colonization with this bacterium. Current approaches often do not reliably mimic natural, long-term bovine colonization with E. coli O157:H7 in older calves and adult animals (ages that enter our food chain). Based on the recent identification of the bovine rectoanal junction mucosa as a site of E. coli O157:H7 colonization, we developed a novel rectal swab administration colonization model. We compared this method with oral dosing and direct contact transmission (Trojan) methods. E. coli O157:H7 carriage status was determined by fecal or rectoanal mucosa swab culture. High ( approximately 10(10) CFU) and low ( approximately 10(7) CFU) oral doses of E. coli O157:H7 in sheep and cattle resulted in variable infection with the bacterium. Some animals became colonized with the bacteria and remained culture positive for several weeks, and some animals did not become colonized and rapidly cleared the bacteria in a few days. Pen mates of E. coli O157:H7 culture-positive Trojan cattle had a low infection rate and variable colonization status. However, rectal swab administration of E. coli O157:H7 to cattle resulted in consistent long-term colonization in all animals. The surprising ease with which long-term infections resulted from a single application of bacteria to the rectoanal mucosa also strongly supported this location as a site of E. coli O157:H7 colonization in cattle.  相似文献   

4.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (10(10) CFU/animal) made resistant to nalidixic acid (Nal(r)). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nal(r) E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nal(r) E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

5.
Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants   总被引:1,自引:0,他引:1  
Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.  相似文献   

6.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 10(8) CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

7.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

8.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 10(7) CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log(10) CFU/g was observed, with a maximum decrease of 1.8 log(10) CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 10(8) CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

9.
Enterohemorrhagic Escherichia coli O157:H7 is an important intestinal pathogen of humans with a main reservoir of domesticated ruminants, particularly cattle. It is anticipated that the risk of human infection can be reduced by controlling the organism within its reservoir hosts. Several options for the control of E. coli O157:H7 in cattle have been proposed, but none have been demonstrated to be successful in the field. Here we describe a novel experimental method, based on the terminal-rectum-restricted colonization described previously, to eliminate fecal carriage of E. coli O157:H7. In experimentally challenged calves, direct application to the rectal mucosa of either of two therapeutic agents, polymyxin B or chlorhexidine, greatly reduced bacterial shedding levels in the immediate posttreatment period. The most efficacious therapeutic agent, chlorhexidine, was compared in orally and rectally challenged calves. The treatment eliminated high-level shedding and reduced low-level shedding by killing bacteria at the terminal rectum. A rapid-detection system based on the ability to identify E. coli O157:H7 from swabs of the rectal mucosa was also assessed. This test was sufficiently sensitive to identify high-level bacterial carriage. Thus, a combination of the detection method and treatment regimens could be used in the field to eliminate high-level fecal excretion of E. coli O157:H7, so greatly reducing its prevalence within this host and the risk of human infection.  相似文献   

10.
AIMS: To assess whether the persistence of Escherichia coli O157:H7 in soil amended with cattle slurry and ovine stomach content waste is affected by the presence of a maize rhizosphere. METHODS AND RESULTS: Cattle slurry and ovine stomach content waste were inoculated with E. coli O157:H7. Wastes were then applied to soil cores with and without established maize plants. The pathogen survived in soil for over 5 weeks, although at significantly greater numbers in soil receiving stomach content waste in comparison to cattle slurry. Persistence of the pathogen in soil was unaffected by the presence of a rhizosphere. CONCLUSIONS: Other factors may be more influential in regulating E. coli O157:H7 persistence in waste-amended soil than the presence or absence of a rhizosphere; however, waste type did have significant affect on the survival of E. coli O157:H7 in such soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157:H7 can be present within animal-derived organic wastes that are routinely spread on land. Introduced measures with regards to such waste disposal may decrease exposure to the organism; however, the persistence of E. coli O157:H7 for considerable periods in waste-amended soil may still pose some risk for both human and animal infection. This study has shown that whilst survival of E. coli O157:H7 in waste-amended soil is not significantly affected by the presence or absence of a maize rhizosphere; it may vary significantly with waste type. This may have implications for land and waste management.  相似文献   

11.
Effect of cattle diet on Escherichia coli O157:H7 acid resistance.   总被引:1,自引:0,他引:1  
The duration of shedding of Escherichia coli O157 isolates by hay-fed and grain-fed steers experimentally inoculated with E. coli O157:H7 was compared, as well as the acid resistance of the bacteria. The hay-fed animals shed E. coli O157 longer than the grain-fed animals, and irrespective of diet, these bacteria were equally acid resistant. Feeding cattle hay may increase human infections with E. coli O157:H7.  相似文献   

12.
Weaned 3- to 4-month-old calves were fasted for 48 h, inoculated with 1010 CFU of Shiga toxin-positive Escherichia coli (STEC) O157:H7 strain 86-24 (STEC O157) or STEC O91:H21 strain B2F1 (STEC O91), Shiga toxin-negative E. coli O157:H7 strain 87-23 (Stx O157), or a nonpathogenic control E. coli strain, necropsied 4 days postinoculation, and examined bacteriologically and histologically. Some calves were treated with dexamethasone (DEX) for 5 days (3 days before, on the day of, and 1 day after inoculation). STEC O157 bacteria were recovered from feces, intestines, or gall bladders of 74% (40/55) of calves 4 days after they were inoculated with STEC O157. Colon and cecum were sites from which inoculum-type bacteria were most often recovered. Histologic lesions of attaching-and-effacing (A/E) O157+ bacteria were observed in 69% (38/55) of the STEC O157-inoculated calves. Rectum, ileocecal valve, and distal colon were sites most likely to contain A/E O157+ bacteria. Fecal and intestinal levels of STEC O157 bacteria were significantly higher and A/E O157+ bacteria were more common in DEX-treated calves than in nontreated calves inoculated with STEC O157. Fecal STEC O157 levels were significantly higher than Stx O157, STEC O91, or control E. coli; only STEC O157 cells were recovered from tissues. Identifying the rectum, ileocecal valve, and distal colon as early STEC O157 colonization sites and finding that DEX treatment enhances the susceptibility of weaned calves to STEC O157 colonization will facilitate the identification and evaluation of interventions aimed at reducing STEC O157 infection in cattle.  相似文献   

13.
In this study, we used mouse ileal loops to investigate the interaction of enterohemorrhagic Escherichia coli (EHEC) O157:H7 with the mouse intestinal mucosa. With a dose of 10(9) and 3 h incubation, EHEC O157 was detected in the lumen and to a lesser extent associated with the epithelium. Typical attaching and effacing (A/E) lesions were seen, albeit infrequently. While the effector protein Tir was essential for A/E lesion formation, the bacterial type III secretion system adaptor protein TccP was dispensable. These results suggest that A/E lesions on mouse intestinal mucosa can be formed independently of robust actin polymerization.  相似文献   

14.
AIMS: This study was conducted to evaluate the effect of supplementing barley- or corn-based diets with canola oil on faecal shedding of Escherichia coli O157:H7 by experimentally inoculated feedlot cattle. METHODS AND RESULTS: Four groups of yearling steers fed on barley- or corn-based feedlot diets containing 0% (BA; CO) or 6% canola oil (BA-O; CO-O) were inoculated with 10(10) CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7. The inoculated strains were tracked in oral (mouth swab) and environmental (water, water bowl interface, feed, faecal pat) samples by enrichment and immunomagnetic separation (IMS) for 12 weeks, and in rectally collected faecal samples for 23 weeks (enumeration by dilution plating for 12 weeks; detection by IMS for a further 11 weeks). Levels of E. coli O157:H7 shed in faecal samples over the course of the enumeration period were similar (P = 0.14) among treatments. Disappearance of the inoculated strains from faeces was more rapid (P = 0.009) with barley than with corn, but shedding levels at the end of the enumeration period were similar (P = 0.21) across grain types. Canola oil supplementation did not affect (P = 0.71) the rate of disappearance of E. coli O157:H7 from faeces. The numbers of steers culture positive for E. coli O157:H7 during the enumeration period were similar (P = 0.57) among treatments. During the 11-week detection period, however, more (P < 0.001) steers were E. coli O157:H7-positive in the BA group (15/64) than in BA-O (two of 64), CO (two of 56), or CO-O (one of 56). The organism was present in two of 48 water samples (both CO-O), one of 48 water bowl swabs (BA-O), four of 48 feed samples (two of 12 BA; two of 12 CO-O), 30 of 48 pen floor faecal pat samples, and 296 of 540 mouth swabs (81/144 BA, 80/144 BA-O, 74/126 CO and 61/126 CO-O). CONCLUSION: Supplementing corn or barley-based diets with canola oil did not affect shedding of E. coli O157:H7 by feedlot cattle. SIGNIFICANCE AND IMPACT OF THE STUDY: High-shedding individuals (i.e. 'super shedders') may be responsible for disseminating E. coli O157:H7 among penmates. Faeces on pen floors appears to be a more significant source of infection than are feed or drinking water.  相似文献   

15.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios > or = 10(2) terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 10(10) PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be > or = 10(2). In addition, phages were maintained at 10(6) PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

16.
Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coli O157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coli O157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for <1 month, viable E. coli O157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for >1 month, E. coli O157:H7 cells were recovered for >120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces.  相似文献   

17.
Enterohaemorrhagic Escherichia coli O157 : H7 is a bacterial pathogen that can cause haemorrhagic colitis and haemolytic uremic syndrome. In the primary reservoir host, cattle, the terminal rectum is the principal site of E. coli O157 colonization. In this study, bovine terminal rectal primary epithelial cells were used to examine the role of H7 flagella in epithelial adherence. Binding of a fliCH7 mutant O157 strain to rectal epithelium was significantly reduced as was binding of the flagellated wild-type strain following incubation with H7-specific antibodies. Complementation of fliCH7 mutant O157 strain with fliCH7 restored the adherence to wild-type levels; however, complementation with fliCH6 did not restore it. High-resolution ultrastructural and imunofluorescence studies demonstrated the presence of abundant flagella forming physical contact points with the rectal epithelium. Binding to terminal rectal epithelium was specific to H7 by comparison with other flagellin types tested. In-cell Western assays confirmed temporal expression of flagella during O157 interaction with epithelium, early expression was suppressed during the later stages of microcolony and attaching and effacing lesion formation. H7 flagella are expressed in vivo by individual bacteria in contact with rectal mucosa. Our data demonstrate that the H7 flagellum acts as an adhesin to bovine intestinal epithelium and its involvement in this crucial initiating step for colonization indicates that H7 flagella could be an important target in intervention strategies.  相似文献   

18.
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.  相似文献   

19.
The aim of this work was to characterize adaptive mucosal immune responses to Escherichia coli O157:H7 at the principal site of colonization in the bovine species. Following experimental infection, extracts from terminal rectum mucosal samples were tested for IgA antibodies by immunoblotting against different bacterial antigens including: whole-cell E. coli O157:H7 with and without proteinase treatment, outer membrane and cytoplasmic preparations, secreted protein supernatants and purified E. coli O157 lipopolysaccharide and H7 flagellin. Lipopolysaccharide and H7 flagellin preparations were also used to coat enzyme-linked immunosorbent assay plates to determine mucosal IgG1 and IgA antibody titers. In this work, evidence is presented of strong local IgA immune responses induced following infection at the bovine terminal rectal mucosa directed against multiple antigens including type III secretion-dependent proteins, O157 lipopolysaccharide, H7 flagellin and OmpC.  相似文献   

20.
Escherichia coli O157:H7 is an important cause of diarrhea, hemorrhagic colitis, and potentially fatal human illness. Cattle are considered a primary reservoir of infection, and recent experimental evidence has indicated that the terminal rectum is the principal site of bacterial carriage. To test this finding in naturally colonized animals, intact rectum samples from 267 cattle in 24 separate lots were obtained immediately after slaughter, and fecal material and mucosal surfaces were cultured for E. coli O157 by direct and enrichment methods. Two locations, 1 and 15 cm proximal to the recto-anal junction, were tested. In total, 35 animals were positive for E. coli O157 at at least one of the sites and 232 animals were negative as determined by all tests. The frequency of isolation and the numbers of E. coli O157 cells were higher at the site closer to the recto-anal junction, confirming our previous experimental findings. We defined low- and high-level carriers as animals with E. coli O157 levels of <1 x 10(3) CFU g(-1) or <1 x 10(3) CFU ml(-1) and animals with E. coli O157 levels of > or =1 x 10(3) CFU g(-1) or > or =1 x 10(3) CFU ml(-1) in feces or tissues, respectively. High-level carriage was detected in 3.7% of the animals (95% confidence interval, 1.8 to 6.8%), and carriage on the mucosal surface of the terminal rectum was associated with high-level fecal excretion. In summary, our results support previous work demonstrating that the mucosal epithelium in the bovine terminal rectum is an important site for E. coli O157 carriage in cattle. The data also support the hypothesis that high-level fecal shedding (> or =1 x 10(3) CFU g of feces(-1)) of enterohemorrhagic E. coli O157 results from colonization of this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号