首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

2.
Treatment of rabbit spermatozoa with 50mM-MgCl2 removes the plasma and the outer acrosomal membranes. Subsequent treatment with the detergents Hyamine 2389 and Triton X-100 solubilizes spermatozoal neuraminidase bound to the inner acrosomal membrane. The enzyme was further purified by DEAE-cellulose, Sephadex G-150 and Bio-Gel P-300 column chromato. The enzyme showed a single major band, with the possibility of some minor contaminants, on disc-gel electrophoresis. It had a specific activity of 0.37 micronmal of sialic acid released/min per mg with purified boar Cowper's-gland mucin as the substrate. The enzyme had marked specificity for 2 leads to 6'-linked sialic acid in glycoproteins. The Km of spermatozoal neuraminidase was 1.72 X 10(-6)M with Cowper's-gland mucin, 1.17 X 10(-5)M with fetuin and 8.8 X 10(-4)M with sialyl-lactose as a substrates. The Vmax. was 0.112 micronmol/min per mg with the Cowper's-gland mucin, 0.071 micronmol/min per mg with fetuin and 0.033 micronmol/min per mg with sialyl-lactose as substrate. The enzyme hydrolysed sheep submaxillary-gland mucin as readily as the Cowper's-gland mucin. The optimum of enzyme activity was at pH 5.0 on the Cowper's-gland mucin and at pH4.3 on sialyl-lactose. The enzyme activity was unaffected by 20mM-Na+ and-K+, but was inhibited by 20mM-Ca2+,-Mn2+,-Co2+ and -Cu2+. The enzyme was unstable in dilute solutions, but could be stored indefinitely freeze-dried at --20 degrees C.  相似文献   

3.
A highly purifed preparation of rat intestinal phosphodiesterase II (oligonucleate 3'-nucleotidohydrolase, EC 3.1.4.18) has been studied using a synthetic substrate, thymidine 3'(2,4-dinitrophenyl) phosphate. The enzyme was most active between pH 6.1 and pH 6.7 and was inhibited by Cu2+ and Zn2+ but unaffected by EDTA, Mg2+, Co2+, and Ni2+. The reaction rate decreased at high levels of enzyme because of competitive inhibition by deoxythymidine 3'-phosphate, a reaction product, which showed a Ki of 2-10(-5) M. The molecular weight of the enzyme by gel-filtration was 150 000-170 000. In electrofocusing experiments multiple peaks of activity were found at pH 3.4, 4.2-4.5and 7.2. Polyacrylamide gel electrophoresis of freshly purified phosphodiesterase II showed up to 10 protein bands in the gels. If the preparations were stored at 4 degrees C for some time only one or two bands appeared. Investigation of the reaction of rat intestinal phosphodiesterase II with a number of possible phosphodiesterase substrates indicated that the enzyme required a nucleoside 3'-phosphoryl residue for the initiation of hydrolysis. Thus compounds such as NAD, ATP, bis-(p-nitrophenyl)phosphate, thymidine 5'-(p-nitrophenyl)phosphate, glycerylphosphorylcholine, guanylyl-(2' leads to 5')-adenosine and 3',5'-cyclic AMP which contain phosphodiester bonds, nevertheless were not substrates for the enzyme. The enzyme was inhibited reverisbly by p-chloromercuribenzoate and p-chloromercuriphenylsulfonate and inactivated irreversibly by iodoacetic acid. Activity of the phosphodiesterase II was reduced to 50% by incubation with 2.0-10(-3)--5.0-10(-3) M iodoacetate for 20--30 min at 24 degrees C at pH 5.0--6.1. Iodoacetamide had no effect. The degree of inactivation by iodoacetate was reduced by the presence of a substrate for the enzyme or, more effectively by deoxythymidine 3'-phosphate, a competitive inhibitor. It is concluded that iodoacetic acid alkylates an essential residue at the active centre of the enzyme.  相似文献   

4.
J W Harper  J C Powers 《Biochemistry》1985,24(25):7200-7213
The time-dependent inactivation of several serine proteases including human leukocyte elastase, cathepsin G, rat mast cell proteases I and II, and human skin chymase by a number of 3-alkoxy-4-chloroisocoumarins, 3-alkoxy-4-chloro-7-nitroisocoumarins, and 3-alkoxy-7-amino-4-chloroisocoumarins at pH 7.5 and the inactivation of several trypsin-like enzymes including human thrombin and factor XIIa by 7-amino-4-chloro-3-ethoxyisocoumarin and 4-chloro-3-ethoxyisocoumarin are reported. The 3-alkoxy substituent of the isocoumarin is likely interacting with the S1 subsite of the enzyme since the most reactive inhibitor for a particular enzyme had a 3-substituent complementary to the enzyme's primary substrate specificity site (S1). Inactivation of several enzymes including human leukocyte elastase by the 3-alkoxy-7-amino-4-chlorisocoumarins is irreversible, and less than 3% activity is regained upon extensive dialysis of the inactivated enzyme. Addition of hydroxylamine to enzymes inactivated by the 3-alkoxy-7-amino-4-chloroisocoumarins results in a slow (t1/2 greater than 6.7 h) and incomplete (32-57%) regain in enzymatic activity at pH 7.5. Inactivation by the 3-alkoxy-4-chloroisocoumarins and 3-alkoxy-4-chloro-7-nitroisocoumarins on the other hand is transient, and full enzyme activity is regained rapidly either upon standing, after dialysis, or upon the addition of buffered hydroxylamine. The rate of inactivation by the substituted isocoumarins is decreased when substrates or reversible inhibitors are present in the incubation mixture, which indicates active site involvement. The inactivation rates are dependent upon the pH of the reaction mixture, the isocoumarin ring system is opened concurrently with inactivation, and the reaction of 3-alkoxy-7-amino-4-chloroisocoumarins with porcine pancreatic elastase is shown to be stoichiometric. The results are consistent with a scheme where 3-alkoxy-7-amino-4-chloroisocoumarins react with the active site serine of a serine protease to give an acyl enzyme in which a reactive quinone imine methide can be released. Irreversible inactivation could then occur upon alkylation of an active site nucleophile (probably histidine-57) by the acyl quinone imine methide. The finding that hydroxylamine slowly catalyzes partial reactivation indicates that several inactivated enzyme species may exist. The 3-alkoxy-substituted 4-chloroisocoumarins and 4-chloro-7-nitroisocoumarins are simple acylating agents and do not give stable inactivated enzyme structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
K Sakai  K Oshima    M Moriguchi 《Applied microbiology》1991,57(9):2540-2543
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

6.
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

7.
L C Cantley  L Josephson 《Biochemistry》1976,15(24):5280-5287
We have examined slow changes in the rate of ATP hydrolysis for purified dog kidney Na+ and K+ stimulated adenosine triphosphatase [(Na-K)ATPase] at various concentrations of free Mg2+, Mg-ATP, K+, and Na+. The effect of these ligands on the rate of ATP hydrolysis is explained by a rapid binding step determining the initial rate of turnover followed by a slow conformational change. Inactivation of enzyme stored in the presence of ethylenediaminetetraacetic acid occurs upon adding free Mg2+, Mg-ATP, and K+; reactivation may be achieved if the concentration of these ligands is reduced. Because of the slow conformational change, the affinities for ligands affecting inactivation are time dependent. A model is presented to explain the effects of free Mg2+ and Ma-ATP on (Na-K)ATPase activity.  相似文献   

8.
Diethyl pyrocarbonate inactivates Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] by a simple bimolecular reaction. The inactivation is not reversed by hydroxylamine. The pH curve of inactivation indicates the involvement of a residue with a pK of 8.8. Several lines of evidence show that the inactivation is due to the modification of epsilon-amino groups of lysyl residues. Although histidyl residue is also modified, this is not directly correlated to the inactivation. No cysteinyl, tyrosyl, or tryptophyl residue or alpha-amino group is significantly modified. The modification of three lysyl residues per enzyme subunit results in the complete loss of aldolase activity toward various 4-hydroxy-2-oxo acid substrates, whereas oxaloacetate beta-decarboxylase activity associated with the enzyme is not inhibited by this modification. Statistical analysis suggests that only one of the three lysyl residues is essential for activity. l-4-Carboxy-4-hydroxy-2-oxoadipate, a physiological substrate for the enzyme, strongly protects the enzyme against inactivation. Pi as an activator of the enzyme shows no specific protection. The molecular weight of the enzyme, Km for substrate or Mg2+, and activation constant for Pi are virtually unaltered after modification. These results suggest that the modification occurs at or near the active site and that the essential lysyl residue is involved in interaction with the hydroxyl group but not with the oxal group of the substrate.  相似文献   

9.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is completely inactivated by phenylglyoxal and 2,3-butanedione in borate buffer at pH 8.4, with pseudo-first-order kinetics and a second-order rate constant of 144 min-1 X M-1 and 21.6 min-1 X M-1, respectively. Phosphoenolpyruvate, ADP and Mn2+ (alone or in combination) protect the enzyme against inactivation, suggesting that the modification occurs at or near to the substrate-binding site. Almost complete restoration of activity was obtained when a sample of 2,3-butanedione-inactivated enzyme was freed of excess modifier and borate ions, suggesting that only arginyl groups are modified. The changes in the rate of inactivation in the presence of substrates and Mn2+ were used to determine the dissociation constants for enzyme-ligand complexes, and values of 23 +/- 3 microM, 168 +/- 44 microM and 244 +/- 54 microM were found for the dissociation constants for the enzyme-Mn2+, enzyme-ADP and enzyme-phosphoenolpyruvate complexes, respectively. Based on kinetic data, it is shown that 1 mol of reagent must combine per enzyme active unit in order to inactivate the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of 3-4 mol [7-14C]phenylglyoxal per mol of enzyme subunit. Assuming a stoichiometry of 1:1 between phenylglyoxal incorporation and arginine modification, our results suggest that the modification of only two of the three to four reactive arginine residues per phosphoenolpyruvate carboxykinase subunit is responsible for inactivation.  相似文献   

10.
A pyridoxal 5'-phosphate-dependent histidine decarboxylase from Morganella morganii AM-15 was purified to homogeneity. The enzyme is a tetramer (Mr 170,000) of identical subunits and binds 4 pyridoxal-P/tetramer; it is resolved by dialysis against cysteine at pH 6.8. Between pH 6.2 and 8.8, the holoenzyme shows pH-independent absorbance maxima at 333 and 416 nm. Vmax/Km is highest at pH 6.5; this optimum reflects chiefly increased Km values for histidine at lower or higher pH values, whereas Vmax is highest at pH 5.0 and decreases only moderately between pH 5.0 and 8.0. The enzyme also decarboxylates beta-(2-pyridyl)alanine and N tau-methylhistidine (but not N pi-methylhistidine); arginine, lysine, and ornithine are neither substrates nor inhibitors. The hydrazine analogue of histidine, 2-hydrazino-3-(4-imidazolyl)propionic acid, is a very potent competitive inhibitor; other carbonyl reagents and a variety of carboxyl- or amino-substituted histidines also inhibit competitively. alpha-Fluoromethylhistidine is a potent irreversible inhibitor of the enzyme; alpha-methylhistidine is a competitive inhibitor/substrate that is decarboxylated slowly and undergoes a slow decarboxylation-dependent transamination that converts the holoenzyme to pyridoxamine-P and apoenzyme. Dithiothreitol and other simple thiols are mixed-type inhibitors that interact with pyridoxal-P at the active site to form complexes (lambda max congruent to 340 nm), presumably the corresponding thioalkylamines, without resolving the holoenzyme. This histidine decarboxylase (Vmax = 72 mumol X min-1 X mg-1) is much more active than "homogeneous" preparations of mammalian pyridoxal-P-dependent histidine decarboxylase (Vmax congruent to 1.0) and is about equal in activity to the pyruvoyl-dependent histidine decarboxylases from Gram-positive bacteria.  相似文献   

11.
An analogue of arginine has been synthesized in which an imidazole ring occupies the position of the guanidino group of the natural amino acid. It was expected that peptides containing this amino acid when protonated might bind at enzymic sites specific for arginine, but that the pK of the imidazole ring, near 7, would facilitate entry of such peptides into cells, in contrast to peptides containing arginine. Other analogues of arginine can be visualized with a low side-chain pK, including isomers of the imidazole derivative which is the subject of this paper. These are viewed as 'pseudoarginines'. Our initial observations concern the properties of delta-(1-imidazolyl)norvaline in which a ring nitrogen atom is attached to norvaline, which thus becomes comparable to the guanidino delta-nitrogen. Its synthesis is described along with several derivatives examined as substrates or inhibitors. Potential ligands containing delta-(1-imidazolyl)norvaline (ImNva) did not give evidence of interaction with trypsin or plasma kallikrein, serine proteinases which bind arginine derivatives. However, clostripain, a bacterial cysteine proteinase specific for arginine, was readily inactivated by Cbz-Phe-ImNva-CH2F and the rate of inactivation showed an acid pH-dependence not observed, for example, in the inactivation of clostripain by Bz-Phe-LysCH2F.  相似文献   

12.
The heat-stable protease from Chryseobacterium indologenes Ix9a was purified to homogeneity using immobilized metal affinity chromatography. The enzyme was characterized as a metalloprotease with an approximate relative molecular mass of 24,000, a pH optimum of 6.5, and a high temperature optimum (50 degrees C). The metal chelator EDTA and the Zn2+-specific chelator 1,10-phenanthroline were identified as inhibitors and atomic absorption analysis showed that the enzyme contained Ca2+ and Zn2+. The activity of the apoenzyme could be restored with Ca2+, Zn2+, Mg2+, and Co2+. Phosphoramidon and Gly-d-Phe did not inhibit Chryseobacterium indologenes Ix9a protease. Heat inactivation did not follow first order kinetics, but showed biphasic inactivation curves. The protease has a Km of 0.813 microg. ml-1 for casein as substrate. Amino acid analysis showed that the protease contains a high amount of small amino acids like glycine, alanine, and serine, but a low concentration of methionine and no cysteine at all. Electrospray mass spectrometry of proteolysis fragments formed when insulin B chain was hydrolyzed showed cleavage at the amino terminal of leucine, tyrosine, and phenylalanine. A hydrophobic amino acid at the carboxyl donating side seems to increase the rate of reaction.  相似文献   

13.
Exposure of the beta-lactamase from Staphylococcus aureus to the slowly reacting substrates cloxacillin or dicloxacillin results in time-dependent inactivation of the enzyme. Methods for the rapid separation of a beta-lactamase-dicloxacillin complex from excess inhibitor, using centrifuged columns of Sephadex G-25 or DEAE-Sephadex G-25, are described. The enzyme-dicloxacillin complex releases active enzyme, with specific activity identical to that of untreated enzyme, after storage at pH 7.5 at 15 degrees C. Full reactivation was accompanied by the release of 0.8 eq of hydrolyzed dicloxacillin. The complex is stable for up to 40 h when stored at pH 3 at 4 degrees C. The reactivation process, which occurs with first-order kinetics at 15 degrees C and pH values between 4 and 8, displays a pH dependence with apparent pKa's of 4.6 and 8.5, and a limiting value of the reactivation rate constant of 0.022 min-1. Deviation from first-order kinetics at pH 9 is consistent with a competing irreversible inactivation of the enzyme at that pH. This behavior differs substantially from that of the similarly inactivated beta-lactamase I from Bacillus cereus, whose rate of reactivation is independent of pH, but which undergoes irreversible denaturation at acidic pH [A. L. Fink, K. M. Behner, and A. K. Tan (1987) Biochemistry 26, 4248-4258]. Addition of hydroxylamine to the S. aureus beta-lactamase-dicloxacillin, complex stimulates the rate of reactivation by a maximum of 35%. This effect is hyperbolically dependent on the concentration of hydroxylamine with half-maximal stimulation at 2.8 mM. The Km for ampicillin hydrolysis catalyzed by the partially reactivated enzyme is identical to that measured for catalysis by the untreated enzyme. We discuss our observations in relation to models for the transient inhibition process.  相似文献   

14.
S-Adenosylhomocysteinase (EC 3.3.1.1) from rat liver is inactivated by 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMC) in a pseudo-first-order fashion. The rate of inactivation is linearly related to the concentration of the reagent, and a second-order rate constant of 4.94 +/- 0.27 M-1 min-1 is obtained at pH 5.5 and 25 degrees C. The inactivation does not involve change in the quaternary structure of the enzyme nor modification or release of the enzyme-bound NAD. Lack of modification at tyrosine, serine, cysteine, histidine, and lysine residues and the fact that the inactivation is favored at low pH suggest that the inactivation is caused by the modification of a carboxyl group. Statistical analysis of the relationship between the residual enzyme activity and the extent of modification, and comparison of the number of residues modified in the presence and absence of the substrate adenosine show that, among four reactive residues per enzyme subunit, only one residue which reacts more rapidly with the reagent than the rest is critical for activity. The CMC-modified enzyme binds adenosine and S-adenosylhomocysteine and is able to oxidize the 3' hydroxyl of these substrates, but apparently fails to catalyze the abstraction of the 4' proton of adenosine.  相似文献   

15.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein protion. All the enzymes were stable in vitro at neurtal and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5'-phosphate, Mn2+, amino acids) were added to the invitro system. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

16.
1. A membrane vesicle fraction containing a high (K+ + H+)-ATPase activity was isolated from porcine gastric mucosa. The enzyme has a pH optimum of 7.0 and is stimulated by T1+, K+, Rb+ and NH4+ with KA values of 0.13, 2.7, 7.6 and 26 mM, respectively, at this pH. 2. Incubation of the isolated membrane fraction with butanedione leads to inactivation of the (K+ + H+)-ATPase activity. The pH-dependence of the (K+ + H+)-ATPase activity. The pH-dependence of the inactivation and the reversibility of the reaction, observed after removal of excess butanedione and borate, indicate that modification of arginine is involved. 3. The inactivation of (K+ + H+)-ATPase activity by butanedione is time-dependent and follows second-order kinetics. From the dependence of the inactivation rate on the reagent concentration it appears that a single arginine residue is involved in the inactivation of the (K+ + H+)-ATPase activity. 4. ATP, deoxy-ATP, ADP and adenylyl imidodiphosphate (AMPPNP), but not CTP, GTP and ITP which are poor substrates, protect the enzyme against butanedione inactivation, suggesting that the essential arginine residue is located in the ATP binding centre. 5. In the presence of Mg2+ the butanedione inactivation is increased, and the protection by ATP, deoxy-ATP and ADP (but not that by AMPPNP) is less pronounced. This suggests that Mg2+ induces a conformational change in the enzyme, exposing the arginine group and coinciding with phosphorylation and subsequent release of ADP from its binding site.  相似文献   

17.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

18.
Isocitrate lyase from the mycelium of Phycomyces blakesleeanus was inactivated with thiol-reactive reagents, 5,5'-dithiobis-(2-nitrobenzoic)acid, p-hydroxymercuribenzoic acid, N-ethylmaleimide or iodoacetate, at pH 6.8 and 25 degrees C. In all cases the inactivation is characterized by a biphasic kinetic profile. The rapid initial phase of inactivation does not increase linearly with increasing reagent concentration, but exhibits an apparent saturation effect, suggesting the formation of a reversible complex between the enzyme and the reagent prior to the inactivation step. Re-activation of the enzyme was observed under thiol excess treatment. The pH dependence of the initial phase of inactivation suggests that a group on the enzyme with pKa = 6.8 is being modified. The effect of ligands was tested on the inactivation reaction. Mg(2+)-Ds-isocitrate and Ds-isocitrate provided total protection, whereas Mg2+ ions, succinate and oxalate provided only partial protection of the enzyme against inactivation. On the basis of these results, we would suggest that the thiol-reactive reagents modify at least one thiol group crucial for the enzymatic activity and probably located in the interface between succinate and glyoxylate subsite.  相似文献   

19.
1. To investigate the mechanism of the reversible inactivation of pig spleen phosphofructokinase by ATP, the effect of order of addition of reactants (substrates, effectors and enzyme solution) was studied by preincubating the enzyme before assay with various combinations of its substrates and effectors. 2. Preincubation of the enzyme with MgATP or ATP at pH7.0 before addition of fructose 6-phosphate caused a rapid and much greater inhibition of activity than that observed when the reaction (carried out at identical substrate concentrations) was initiated with enzyme. 3. The rapid inhibition caused by preincubation with ATP, together with the sigmoidal response to fructose 6-phosphate and activation by AMP, were all blocked by prior photo-oxidation of the enzyme with Methylene Blue, which selectively destroys the inhibitory binding site for ATP [Ahlfors & Mansour (1969) J. Biol. Chem.244, 1247-1251]. 4. Fructose 6-phosphate, but not Mg(2+), protected phosphofructokinase from inhibition during preincubation with ATP in a manner that was sigmoidally dependent on the fructose 6-phosphate concentration. 5. Mg(2+), by protecting the enzyme from the inhibitory effect of preincubation at low pH (7.0) and by preventing its activation during preincubation with fructose 6-phosphate, demonstrated both a weak activating effect in the absence of the other substrates and a stronger inhibitory effect in the presence of fructose 6-phosphate. 6. Positive effectors (K(+), NH(4) (+), AMP and aspartate) protected the enzyme from inhibition during preincubation with MgATP in proportion to their potency as activators, but citrate potentiated the ATP inhibition. P(i) significantly slowed the inactivation process without itself acting as a positive effector. 7. The non-linear dependence of the initial rate of the unmodified enzyme on protein concentration (associated with increased positive homotropic co-operativity to fructose 6-phosphate) was intensified by preincubation with ATP and abolished by photo-oxidation. 8. The results are interpreted in terms of an association-dissociation model which postulates that protonation, at low pH, of a photo-oxidation-sensitive inhibitory site for ATP allows more rapid dissociation of an active tetramer to an inactive dimeric species.  相似文献   

20.
The rate of inactivation of succinyl-CoA:3-ketoacid coenzyme A transferase by thiol reagents is increased 3 to 100 times by very low concentrations of acyl-CoA substrates. The same maximum inactivation rate is found with acetoacetyl-CoA and succinyl-CoA. The enhanced rate of inactivation is caused by the stoichiometric formation of the enzyme-CoA intermediate and an accompanying conformation change of the enzyme. The inactivation rate provides a simple assay for the amount of enzyme present as the enzyme-CoA intermediate, using only catalytic concentrations of enzyme. This technique has been utilized to measure (a) a rate constant for hydrolysis of the enzyme-CoA intermediate of 0.10 min-1 at pH 8.1; (b) a stoichiometry of two active sites per enzyme molecule; and (c) the equilibrium constants for formation of the enzyme-CoA intermediate from dilute solutions of substrates (and hence for the overall reaction) by determining the ratio of [enzyme-CoA]/[enzyme] in the presence of a series of substrate "buffers" at different ratios of [RCOO-]/[RCOSCoA]. As the total concentration of acyl-CoA and carbosylate substrates is increased, the inactivation rate is decreased. This indicates that the Michaelis complexes are protected against inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号