首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease.  相似文献   

2.
Infections by parasitic protozoans and helminths are a major world-wide health concern, but no vaccines exist to the major human parasitic diseases, such as malaria, African trypanosomiasis, amebiasis, leishmaniasis, schistosomiasis, and lymphatic filariasis. Recent studies on a number of parasites indicate that immune responses to parasites in infected animals and humans are directed to glycan determinants within cell surface and secreted glycoconjugates and that glycoconjugates are important in host-parasite interactions. Because of the tremendous success achieved recently in generating carbohydrate-protein conjugate vaccines toward microbial infections, such as Haemophilus influenzae type b, there is renewed interest in defining parasite-derived glycans in the prospect of developing conjugate vaccines and new diagnostics for parasitic infections. Parasite-derived glycans are compelling vaccine targets because they have structural features that distinguish them from mammalian glycans. There have been exciting new developments in techniques for glycan analysis and the methods for synthesizing oligosaccharides by chemical or combined chemo-enzymatic approaches that now make it feasible to generate parasite glycans to test as vaccine candidates. Here, we highlight recent progress made in elucidating the immunogenicity of glycans from some of the major human and animal parasites, the potential for developing conjugate vaccines for parasitic infections, and the possible utilization of these novel glycans in diagnostics.  相似文献   

3.
Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus, algae are promising organisms for producing cysteine-disulfide-containing malaria transmission blocking vaccine candidate proteins.  相似文献   

4.
5.
Leishmaniasis, a parasitic protozoan disease, is still a worldwide concern due to persistent issues with chemotherapy, rapid emerging drug resistance; and non- availability of approved vaccine for the control of disease. Therefore, the search of parasite specific proteins to identify new anti-leishmanial drug targets and vaccine candidates is an urgent priority. In this context, proteins that are secreted, in vitro during parasite growth under defined conditions, can be explored as potential tool for studying their roles in parasite survival inside host and disease pathogenesis. From the last few years, various approaches have been exploited to identify the proteins secreted out by the parasites under defined conditions at particular stage or time. Due to availability of genomic information on various Leishmania species, proteomics have been emerged as most promising approach for analyzing the complexity of exoproteome of different Leishmania species. Herein, we have summarized various secretion mechanisms used by Leishmania parasites to export the proteins into the extracellular space; followed by the role of proteomics in exoproteome analysis along with special emphasis on various applications to study the exoproteome, which might provide potential targets for drug design or novel antigens for vaccine development.  相似文献   

6.
Prospects for vaccines of helminth parasites of grazing ruminants   总被引:1,自引:0,他引:1  
Defined molecular vaccines for several ruminant heliminth parasites are being pursued at several different laboratories. The most fruitful sources of antigen have been oncosphere surface proteins, excretory/secretory products and integral gut membrane proteins. Nematode gut membrane proteins are unconventional in that they do not come into contact with the host immune response during infection, a feature which brings advantages as well as disadvantages. The genes encoding several of the protective antigens have been cloned, but only in the case of the oncosphere surface proteins has substantial protection been reported with recombinant versions. In addition to the problem of identifying suitable expression systems, issues such as choice of adjuvant and/or the possible use of a vaccine vector have to be solved before molecular vaccines for the economically important helminths can be launched. Of the latter, it seems that vaccines for Haemonchus and Fasciola are the brightest prospects.  相似文献   

7.
Leishmania cysteine proteases are potential vaccine candidates and drug targets. To study the role of cathepsin B cysteine protease, we have generated and characterized cathepsin B null mutant L. donovani parasites. L. donovani cathepsin B null mutants grow normally in culture, but they show significantly attenuated virulence inside macrophages. Quantitative proteome profiling of wild type and null mutant parasites indicates cathepsin B disruption induced remodeling of L. donovani proteome. We identified 83 modulated proteins, of which 65 are decreased and 18 are increased in the null mutant parasites, and 66% (55/83) of the modulated proteins are L. donovani secreted proteins. Proteins involved in oxidation-reduction (trypanothione reductase, peroxidoxins, tryparedoxin, cytochromes) and translation (ribosomal proteins) are among those decreased in the null mutant parasites, and most of these proteins belong to the same complex network of proteins. Our results imply virulence role of cathepsin B via regulation of Leishmania secreted proteins.  相似文献   

8.
The development of subunit vaccines against most parasitic helminth infections will require a better understanding of the different components of a natural rejection process including (1) recognition of parasite antigens; (2) induction of protective immune response phenotypes; and (3) activation of appropriate immune effector mechanisms. While novel technologies have allowed significant progress to be made in the identification of candidate vaccine antigens, the large scale production of these antigens and their presentation to the host with appropriate adjuvant systems remains a major problem in vaccine research. Identification of the molecular interactions involved in the innate immune response to helminth infections and the application of new genomic and proteomic technologies are likely to lead to major advances in these research fields. Gastrointestinal nematode parasites and liver fluke are the most important helminth parasites of production animals. In recent years, a lot of new knowledge has been gathered on the immunobiology of the host-parasite interactions in these two infection systems, which has allowed new vaccination strategies to be considered. Functional genomic technologies such as gene expression analysis by microarrays, promise to further advance our understanding of the molecular pathways leading to protection against parasite infections. This will not only have implications for vaccine research, but also provide novel targets for drug development and genetic selection.  相似文献   

9.
Human babesiosis is an emerging tick-borne parasitic disease and blood transfusion-transmitted infection primarily caused by the apicomplexan parasite, Babesia microti. There is no licensed vaccine for B. microti and the development of a reliable serological screening test would contribute to ensuring the safety of the donated blood supply. The recent sequencing of the B. microti genome has revealed many novel genes encoding proteins that can now be tested for their suitability as subunit vaccine candidates and diagnostic serological markers. Extracellular proteins are considered excellent vaccine candidates and serological markers because they are directly exposed to the host humoral immune system, but can be challenging to express as soluble recombinant proteins. We have recently developed an approach based on a mammalian expression system that can produce large panels of functional recombinant cell surface and secreted parasite proteins. Here, we use the B. microti genome sequence to identify 54 genes that are predicted to encode surface-displayed and secreted proteins expressed during the blood stages, and show that 41 (76%) are expressed using our method at detectable levels. We demonstrate that the proteins contain conformational, heat-labile, epitopes and use them to serologically profile the kinetics of the humoral immune responses to two strains of B. microti in a murine infection model. Using sera from validated human infections, we show a concordance in the host antibody responses to B. microti infections in mouse and human hosts. Finally, we show that BmSA1 expressed in mammalian cells can elicit high antibody titres in vaccinated mice using a human-compatible adjuvant but these antibodies did not affect the pathology of infection in vivo. Our library of recombinant B. microti cell surface and secreted antigens constitutes a valuable resource that could contribute to the development of a serological diagnostic test, vaccines, and elucidate the molecular basis of host-parasite interactions.  相似文献   

10.
Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens.  相似文献   

11.
Empirical studies of helminth parasites reveal that the distribution of parasite burdens in their host populations is highly aggregated. This aggregation is fundamental to the ecology and epidemiology of helminth parasites. Results from a stochastic model predict that aggregation of helminth parasites is inversely related to the intensity of host immunity. Aggregation also decreases with antigenic heterogeneity and increases with heterogeneity in transmissibility among parasite strains. It is also found that the degree of aggregation is greater when immunity affects parasite fecundity than when immunity acts on host susceptibility. Potential relevance of this result for assessing the influence of vaccines that target either host susceptibility or parasite fecundity on the level of aggregation and consequent effects on drug resistance and disease prevalence are discussed.  相似文献   

12.
Hookworms are blood-feeding intestinal parasites of mammalian hosts and are one of the major human ailments affecting approximately 600 million people worldwide. These parasites form an intimate association with the host and are able to avoid vigorous immune responses in many ways including skewing of the response phenotype to promote parasite survival and longevity. The primary interface between the parasite and the host is the excretory/secretory component, a complex mixture of proteins, carbohydrates, and lipids secreted from the surface or oral openings of the parasite. The composition of this complex mixture is for the most part unknown but is likely to contain proteins important for the parasitic lifestyle and hence suitable as drug or vaccine targets. Using a strategy combining the traditional technology of one-dimensional SDS-PAGE and the newer fractionation technology of OFFGEL electrophoresis we identified 105 proteins from the excretory/secretory products of the blood-feeding stage of the dog hookworm, Ancylostoma caninum. Highly represented among the identified proteins were lectins, including three C-type lectins and three beta-galactoside-specific S-type galectins, as well as a number of proteases belonging to the three major classes found in nematodes, aspartic, cysteine, and metalloproteases. Interestingly 28% of the identified proteins were homologous to activation-associated secreted proteins, a family of cysteine-rich secreted proteins belonging to the sterol carrier protein/Tpx-1/Ag5/PR-1/Sc-7 (TAPS) superfamily. Thirty-four of these proteins were identified suggesting an important role in host-parasite interactions. Other protein families identified included hyaluronidases, lysozyme-like proteins, and transthyretin-like proteins. This work identified a suite of proteins important for the parasitic lifestyle and provides new insight into the biology of hookworm infection.  相似文献   

13.
14.
Currently, the greatest causes of human morbidity and mortality are infectious diseases. Vaccination remains the most effective measure to lessen this burden on the human population. Many vaccines presently in use were developed using techniques first proposed by Louis Pasteur, which involved the use of inactivated, attenuated live forms, or extracts of pathogenic organisms to immunize the host and provide protection from the disease. The advent of the genomic era has recently led to a new generation of rationally designed vaccines developed using a process termed reverse vaccinology. This approach uses genomic data in silico to identify proteins encoded by the pathogen as potential vaccine candidates. Proteomic technologies serve as an important complement to the reverse vaccinology approach to antigen discovery. Proteomic techniques are able to identify proteins that are expressed by the pathogen during infection of a host and the subset of proteins that reside on the surface of the pathogen. These two traits should be considered central factors to vaccine antigen selection as they assure that the host will be able to mount an effective immune response that leads to lasting protection from the pathogen.  相似文献   

15.
Vaccination is the single most effective way to control viral diseases. However, many currently used vaccines have safety concerns, efficacy issues or production problems. For other viral pathogens, classic approaches to vaccine development have, thus far, been unsuccessful. Virus-like particles (VLPs) are increasingly being considered as vaccine candidates because they offer significant advantages over many currently used vaccines or developing vaccine technologies. VLPs formed with structural proteins of Newcastle disease virus, an avian paramyxovirus, are a potential vaccine candidate for Newcastle disease in poultry. More importantly, these VLPs are a novel, uniquely versatile VLP platform for the rapid construction of effective vaccine candidates for many human pathogens, including genetically complex viruses and viruses for which no vaccines currently exist.  相似文献   

16.
After more than three decades of research into the development of vaccines against parasites, a substantial number of antigens have been identified that, as purified native proteins or recombinant proteins, induce some protection against the target parasite. Very few achieve a degree of efficacy likely to make them candidates for single-antigen vaccines. Therefore, multi-antigen or 'cocktail' vaccines are proposed based on the assumption that such cocktails will show enhanced efficacy. This assumption, although often poorly acknowledged, has become central to much vaccine research. The experimental evidence for it, however, is extremely scarce and contradictory. The efficacy of multicomponent vaccines deserves greater experimental attention than it has received.  相似文献   

17.
Malaria is a major human health problem and is responsible for over 2 million deaths per year. It is caused by a number of species of the genus Plasmodium, and Plasmodium falciparum is the causative agent of the most lethal form. Consequently, the development of a vaccine against this parasite is a priority. There are a number of stages of the parasite life cycle that are being targeted for the development of vaccines. Important candidate antigens include proteins on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to manipulate the genome of Plasmodium species has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. This has provided new information on the role of merozoite antigens in erythrocyte invasion and also allows new approaches to address their potential as vaccine candidates.  相似文献   

18.
To identify new vaccine candidates, Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx search, which resulted in a significant number of E. tenella contigs with homologies to entries in public databases. Amino acid sequences of appropriate homologous proteins were analysed for the occurrence of an N-terminal signal sequence using the algorithm signalP. The resulting list of 84 entries comprised 51 contigs whose deduced proteins showed homologies to proteins of apicomplexan parasites. Based on function or localisation, we selected candidate proteins classified as (i) secreted proteins of Apicomplexa parasites, (ii) secreted enzymes, and (iii) transport and signalling proteins. To verify our strategy experimentally, we used a functional complementation system in yeast. For five selected candidate proteins we found that these were indeed secreted. Our approach thus represents an efficient method to identify secretory and surface proteins out of EST databases.  相似文献   

19.
Cysteine proteases have been identified as promising targets for the development of antiparasitic chemotherapy. An attractive aspect of these enzymes is their widespread importance in both protozoan and helminth parasites of domestic animals and humans. Concerns about the ability to selectively inhibit parasite proteases without affecting host homologues have been addressed in recent studies of Trypanosoma cruzi and Plasmodium falciparum. Significant data on half-life, metabolism, pharmacokinetics and safety have been accumulated. Differential uptake of proteases by parasitic organisms versus host cells, and relatively less redundancy in parasite protease gene families, may be two factors which contribute to the successful treatment of animal models of infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号