首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a genomic library constructed from Saccharomyces cerevisiae, we have identified a gene GFA1 that confers resistance to methylmercury toxicity. GFA1 encodes L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) and catalyzes synthesis of glucosamine-6-phosphate. Transformed yeast cells expressing GFA1 demonstrated resistance to methylmercury but no resistance to p-chloromercuribenzoate, a GFAT inhibitor. The cytotoxicity of methylmercury was inhibited by loading excess glucosamine 6-phosphate into yeast. Considering that GFAT is an essential cellular enzyme, our findings suggest that GFAT is the major target molecule of methylmercury in yeasts. This report is the first to identify the target molecule of methylmercury toxicity in eukaryotic cells.  相似文献   

2.
D-Fructose-6-phosphate was shown not to be a substrate for glucose-6-phosphate dehydrogenases (EC. 1.1.1.49) from human erythrocytes, bovine adrenal, rat liver, three yeasts (brewer's yeast, baker's yeast, and Candida utilis), and Leuconostoc mesenteroides. These findings contrast with those of G.M. Kidder (J. Exp. Zool., 226:385-390, '83).  相似文献   

3.
Trehalose-6-phosphate is a pivotal regulator of sugar metabolism, growth, and osmotic equilibrium in bacteria, yeasts, and plants. To directly visualize the intracellular levels of intracellular trehalose-6-phosphate, we developed a series of specific Förster resonance energy transfer (FRET) sensors for in vivo microscopy. We demonstrated real-time monitoring of regulation in the trehalose pathway of Escherichia coli. In Saccharomyces cerevisiae, we could show that the concentration of free trehalose-6-phosphate during growth on glucose is in a range sufficient for inhibition of hexokinase. These findings support the hypothesis of trehalose-6-phosphate as the effector of a negative feedback system, similar to the inhibition of hexokinase by glucose-6-phosphate in mammalian cells and controlling glycolytic flux.  相似文献   

4.
The distribution of NAD kinase and glucose-6-phosphate dehydrogenase within membranes of both outer and inner retina rod segments was studied by the sucrose gradient centrifugation of crude outer segment preparations. Rhodopsin and retinoldehydrogenase served as markers for outer segment membranes, whereas succinate dehydrogenase was a marker for inner ones. It is shown that NAD kinase and glucose-6-phosphate dehydrogenase are localized within inner segment membranes of the photoreception cell and that the activity of these enzymes in the crude preparations is due to contamination of the inner segments.  相似文献   

5.
6.
A major 38-kDa protein associated with bovine rod outer segment plasma membranes, but not disk membranes, has been identified as glyceraldehyde-3-phosphate dehydrogenase on the basis of its N-terminal sequence and specific enzyme activity. This enzyme was extracted from lysed rod outer segments or isolated rod outer segment plasma membrane with 0.15 M NaCl and purified to homogeneity by affinity chromatography on a NAD(+)-agarose column. A specific activity of 90-100 units/mg of protein is within the range of activity obtained for glyceraldehyde-3-phosphate dehydrogenase isolated from other mammalian cells. Enzyme activity measurements indicate that this enzyme makes up approximately 2% of the total rod outer segment protein and over 11% of the plasma membrane protein. Protease digestion and binding studies on purified rod outer segment plasma and disk membranes suggest that glyceraldehyde-3-phosphate dehydrogenase reversibly interacts with a protease-sensitive plasma membrane-specific protein of rod outer segments. The finding that glyceraldehyde-3-phosphate dehydrogenase is present in large quantities in rod outer segments suggests that at least some of the energy required for the synthesis of ATP and GTP for phototransduction and other processes of the outer segment is derived from glycolysis which takes place within this organelle.  相似文献   

7.
The biosynthesis of one riboflavin (vitamin B2) molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1 H ,3 H )-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1 H ,3 H )-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate yields 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1 H ,3 H )-pyrimidinedione, which is recycled in the biosynthetic pathway. Characteristic architectural features of most enzymes involved in the plant riboflavin pathway resemble those of eubacteria, whereas the similarities between plants and yeasts are less pronounced. Moreover, riboflavin biosynthesis in plants proceeds by the same reaction steps as in eubacteria, whereas fungi use a somewhat different pathway.  相似文献   

8.
Activity of a pentulose (xylulose 5-phosphate) phosphoketolase was detected in 20 out of 25 yeasts examined. No significant activity was detected in any yeast grown with glucose, and the enzyme was induced by up to 70-fold when the yeasts were grown on xylose as sole carbon source. Biomass yields from xylose were greater than, or approximately equal to, those from glucose in 15 of the 19 yeasts which possessed phosphoketolase activity. The molar yield of C2 units from xylose, by metabolism via the pentose phosphate pathway, can be calculated to be insufficient to account for the high yields of biomass and ethanol obtained from xylose. We have shown that the presence of a phosphoketolase system can account for such yields by producing 2 mol C2 from 1 mol C5. This pathway must therefore be regarded as a major route of pentose dissimilation in such yeasts.  相似文献   

9.
Wu G  Sun Y  Qu W  Huang Y  Lu L  Li L  Shao W 《PloS one》2011,6(2):e17082
The enzyme glutamine: fructose-6-phosphate aminotransferase (GFAT), also known as glucosamine synthase (GlmS), catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. For the first time, the GFAT gene was proven to possess a function as an effective selection marker for genetically modified (GM) microorganisms. This was shown by construction and analysis of two GFAT deficient strains, E. coli ΔglmS and S. pombe Δgfa1, and the ability of the GFAT encoding gene to mediate plasmid selection. The gfa1 gene of the fission yeast Schizosaccharomyces pombe was deleted by KanMX6-mediated gene disruption and the Cre-loxP marker removal system, and the glmS gene of Escherichia coli was deleted by using λ-Red mediated recombinase system. Both E. coli ΔglmS and S. pombe Δgfa1 could not grow normally in the media without addition of glucosamine. However, the deficiency was complemented by transforming the plasmids that expressed GFAT genes. The xylanase encoding gene, xynA2 from Thermomyces lanuginosus was successfully expressed and secreted by using GFAT as selection marker in S. pombe. Optimal glucosamine concentration for E. coli ΔglmS and S. pombe Δgfa1 growth was determined respectively. These findings provide an effective technique for the construction of GM bacteria without an antibiotic resistant marker, and the construction of GM yeasts to be applied to complex media.  相似文献   

10.
The view of the role of trehalose in yeast has changed in the last few years. For a long time considered a reserve carbohydrate, it gained new importance when its function in the acquisition of thermotolerance was demonstrated. More recently the cellular processes in which the trehalose biosynthetic pathway has been implicated range from the control of glycolysis to sporulation and infectivity by certain fungal pathogens. There is now enough experimental evidence to conclude that trehalose 6-phosphate, an intermediate of trehalose biosynthesis, is an important metabolic regulator in such different organisms as yeasts or plants. Its inhibition of hexokinase plays a key role in the control of the glycolytic flux in Saccharomyces cerevisiae but other, likely important, sites of action are still unknown. We present examples of the phenotypes produced by mutations in the two steps of the trehalose biosynthetic pathway in different yeasts and fungi, and whenever possible examine the molecular explanations advanced to interpret them.  相似文献   

11.
A previously reported enzyme assay on a membrane filter using 4-methylumbelliferyl (4-MU)-N-acetyl-beta-D-galactosaminide, -phosphate and -pyrophosphate as substrates for the differentiation of four Candida spp. has been extended to Candida parapsilosis. The substrate 4-MU-beta-D-glucoside was hydrolyzed by 28 test strains of this species but to a variable extent by seven other yeasts also. For a full enzymatic differentiation of C. parapsilosis from other medical yeasts, a battery of six reactions was required. Of 71 C. parapsilosis positive clinical samples, 4.2% gave a false negative result due to overgrowth by Candida albicans. The present assay is more rapid than a described spectrofluorometric determination of beta-D-glucosidase in a broth, i.e., 9-11 h versus up to >48 h.  相似文献   

12.
A yeast glyceraldehyde-3-phosphate dehydrogenase gene has been isolated from a collection of Escherichia coli transformants containing randomly sheared segments of yeast genomic DNA. Complementary DNA, synthesized from partially purified glyceraldehyde-3-phosphate dehydrogenase messenger RNA, was used as a hybridization probe for cloning this gene. The isolated hybrid plasmid DNA has been mapped with restriction endonucleases and the location of the glyceraldehyde-3-phosphate dehydrogenase gene within the cloned segment of yeast DNA has been established. There are approximately 4.5 kilobase pairs of DNA sequence flanking either side of the glyceraldehyde-3-phosphate dehydrogenase gene in the cloned segment of yeast DNA. The isolated hybrid plasmid DNA has been used to selectively hybridize glyceraldehyde-3-phosphate dehydrogenase messenger RNA from unfractionated yeast poly(adenylic acid)-containing messenger RNA. The nucleotide sequence of a portion of the isolated hybrid plasmid DNA has been determined. This nucleotide sequence encodes 29 amino acids which are at the COOH terminus of the known amino acid sequence of yeast glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

13.
GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding proteins) are a family of monomeric clathrin adaptor proteins that are conserved from yeasts to humans. Data published during the past four years have provided detailed pictures of the localization, domain organization and structure-function relationships of GGAs. GGAs possess four conserved functional domains, each of which interacts with cargo proteins including mannose 6-phosphate receptors, the small GTPase ARF, clathrin, or accessory proteins including Rabaptin-5 and gamma-synergin. Together with or independent of the adaptor protein complex AP-1, GGAs regulate selective transport of cargo proteins, such as mannose 6-phosphate receptors, from the trans-Golgi network to endosomes mediated by clathrin-coated vesicles.  相似文献   

14.
Glucosamine-6-phosphate deaminase from Escherichia coli (EC 3.5.99.6) is an allosteric enzyme, activated by N-acetylglucosamine 6-phosphate, which converts glucosamine-6-phosphate into fructose 6-phosphate and ammonia. X-ray crystallographic structural models have showed that Arg172 and Lys208, together with the segment 41-44 of the main chain backbone, are involved in binding the substrate phospho group when the enzyme is in the R activated state. A set of mutants of the enzyme involving the targeted residues were constructed to analyze the role of Arg172 and Lys208 in deaminase allosteric function. The mutant enzymes were characterized by kinetic, chemical, and spectrometric methods, revealing conspicuous changes in their allosteric properties. The study of these mutants indicated that Arg172 which is located in the highly flexible motif 158-187 forming the active site lid has a specific role in binding the substrate to the enzyme in the T state. The possible role of this interaction in the conformational coupling of the active and the allosteric sites is discussed.  相似文献   

15.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

16.
Long-chain dehydrogenases were scrutinized for common patterns. Overall molecular similarities are not discerned, in contrast to the situation for several short-chain and medium-chain dehydrogenases, but coenzyme-binding segments are discernible. Species variants of glucose-6-phosphate dehydrogenase reveal about 20% strictly conserved residues, grouped into three segments and supporting assignments of sites for coenzyme-binding and catalysis. Glycine is overrepresented among the residues conserved, typical of distantly related proteins. Two of the enzymes within the pentose phosphate pathway reveal a distant similarity of interest for further evaluation, between a C-terminal 178-residue segment of glucose-6-phosphate dehydrogenase and the N-terminal part of 6-phosphogluconate dehydrogenase.  相似文献   

17.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

18.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

19.
Slodki, M. E. (U. S. Department of Agriculture, Peoria, Ill.), Lynferd J. Wickerham, and M. C. Cadmus. Phylogeny of phosphomannan-producing yeasts. II. Phosphomannan properties and taxonomic relationships. J. Bacteriol. 82:269-274. 1961.-Primitive species of yeasts belonging to the genus Hansenula and closely related genera produce extracellular phosphorylated mannans from glucose. These polysaccharides, called phosphomannans, contain mannose and mannose 6-phosphate as the only carbohydrate constituents. A comparative study of these phosphomannans yielded valuable phylogenetic information bearing on the yeasts that produce them. Strains of the same species elaborate similar phosphomannans. An inverse relationship was found between the evolutionary status of the organism and the degree of phosphorylation of its phosphomannan.  相似文献   

20.
Recent work has raised a question as to the involvement of erythrose-4-phosphate, a product of the pentose phosphate pathway, in the metabolism of the methanogenic archaea (R. H. White, Biochemistry 43:7618-7627, 2004). To address the possible absence of erythrose-4-phosphate in Methanocaldococcus jannaschii, we have assayed cell extracts of this methanogen for the presence of this and other intermediates in the pentose phosphate pathway and have determined and compared the labeling patterns of sugar phosphates derived metabolically from [6,6-2H2]- and [U-13C]-labeled glucose-6-phosphate incubated with cell extracts. The results of this work have established the absence of pentose phosphate pathway intermediates erythrose-4-phosphate, xylose-5-phosphate, and sedoheptulose-7-phosphate in these cells and the presence of D-arabino-3-hexulose-6-phosphate, an intermediate in the ribulose monophosphate pathway. The labeling of the D-ara-bino-3-hexulose-6-phosphate, as well as the other sugar-Ps, indicates that this hexose-6-phosphate was the precursor to ribulose-5-phosphate that in turn was converted into ribose-5-phosphate by ribose-5-phosphate isomerase. Additional work has demonstrated that ribulose-5-phosphate is derived by the loss of formaldehyde from D-arabino-3-hexulose-6-phosphate, catalyzed by the protein product of the MJ1447 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号