首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Observations have been made on spermatozoa from the domestic fowl, quail and pigeon (non-passerine birds) and also from the starling and zebra finch (passerine birds). In free motion, all these spermatozoa roll (spin) continuously about the progression axis, whether or not they are close to a plane surface. Furthermore, the direction of roll is consistently clockwise (as seen from ahead). The flagellar wave has been shown to be helical and dextral (as predicted) for domestic fowl sperm when they swim rapidly in low viscosity salines. Calculations have shown that their forward velocity is consistent with their induced angular velocity but that the size of the sperm head is suboptimal for progression speed under these conditions. Dextrally helical waves also occur on the distal flagellum of fowl, quail and pigeon sperm in high viscosity solutions. But in other cases, the mechanism of torque-generation is more problematical. The problem is most profound for passerine sperm, in that typically these cells spin rapidly while seeming to remain virtually straight. Because there is no evidence for a helical wave on these flagella, we have considered other possible means whereby rotation about the local flagellar axis (self-spin) might be achieved. Sometimes, passerine sperm, while maintaining their spinning motion, adopt a fixed curvature; this must be an instance of bend-transfer circumferentially around the axonemal cylinder-though the mechanism is obscure. It is suggested that the self-spin phenomenon may be occurring in non-passerine sperm that in some circumstances spin persistently, yet without expressing regular helical waves. More complex waves are apparent in non-passerine sperm swimming in high viscosity solutions: added to the small scale bends is a large scale, sinistrally helical curvature of the flagellum. It is argued that the flagellum follows this sinistrally helical path (i.e. "screws" though the fluid) because of the shape of the sperm head and the angle at which the flagellum is inserted into it. These conclusions concerning avian sperm motility are thought to have relevance to other animal groups. Also reported are relevant aspects of flagellar ultrastructure for pigeon and starling sperm.  相似文献   

3.
We develops a theory of the Brownian motion of a rigid helical object such as bacterial flagella. The statistical properties of the random forces acting on the helical object are discussed and the coefficients of the correlations of the random forces are determined. The averages , and are also calculated where z and theta are the position along and angle around the helix axis respectively. Although the theory is limited to short time interval, direct comparison with experiment is possible by using the recently developed cinematography technique.  相似文献   

4.
Study of the motion of magnetotactic bacteria   总被引:1,自引:0,他引:1  
Motion of flagellate bacteria is considered from the point of view of rigid body mechanics. As a general case we consider a flagellate coccus magnetotactic bacterium swimming in a fluid in the presence of an external magnetic field. The proposed model generalizes previous approaches to the problem and allows one to access parameters of the motion that can be measured experimentally. The results suggest that the strong helical pattern observed in typical trajectories of magnetotactic bacteria can be a biological advantage complementary to magnetic orientation. In the particular case of zero magnetic interaction the model describes the motion of a non-magnetotactic coccus bacterium swimming in a fluid. Theoretical calculations based on experimental results are compared with the experimental track obtained by dark field optical microscopy. Correspondence to: H. G. P. Lins de Barros  相似文献   

5.
Physiologic and kinetic joint simulators have been widely used for investigations of joint mechanics. The two types of simulator differ in the way joint motion is achieved; through prescribed motions and/or forces in kinetic joint simulators and by tendon loads in physiologic joint simulators. These two testing modalities have produced important insights, as in elucidating the importance of soft tissue structures to joint stability. However, the equivalence of the modalities has not been tested. This study sequentially tested five cadaveric elbows using both a physiologic simulator and a robot/6DOF system. Using position data from markers on the humerus and ulna, we calculated and compared the helical axes of motion of the specimens as the elbows were flexed from full extension. Six step size increments were used in the helical axis calculation. Marker position data at each test's full extension and full flexion point were also used to calculate a datum (overall) helical axis. The angles between the datum axis and step-wise movements were computed and stored. Increasing step size monotonically decreased the variability and the average conical angle encompassing the helical axes; a repeated measures ANOVA using test type (robot or physiologic simulator) and step size found that both type and step caused statistically significant differences (p<0.001). The large changes in helical axis angle observed for small changes in elbow flexion angle, especially in the robot tests, are a caveat for investigators using similar control algorithms. Controllers may need to include increased joint compliance and/or C(1) continuity to reduce variability.  相似文献   

6.
Understanding in vivo subtalar joint kinematics is important for evaluation of subtalar joint instability, the design of a subtalar prosthesis and for analysing surgical procedures of the ankle and hindfoot. No accurate data are available on the normal range of subtalar joint motion. The purpose of this study was to introduce a method that enables the quantification of the extremes of the range of motion of the subtalar joint in a loaded state using multidetector computed tomography (CT) imaging. In 20 subjects, an external load was applied to a footplate and forced the otherwise unconstrained foot in eight extreme positions. These extreme positions were foot dorsiflexion, plantarflexion, eversion, inversion and four extreme positions in between the before mentioned positions. CT images were acquired in a neutral foot position and each extreme position separately. After bone segmentation and contour matching of the CT data sets, the helical axes were determined for the motion of the calcaneus relative to the talus between four pairs of opposite extreme foot positions. The helical axis was represented in a coordinate system based on the geometric principal axes of the subjects’ talus. The greatest relative motion between the calcaneus and the talus was calculated for foot motion from extreme eversion to extreme inversion (mean rotation about the helical axis of 37.3±5.9°, mean translation of 2.3±1.1 mm). A consistent pattern of range of subtalar joint motion was found for motion of the foot with a considerable eversion and inversion component.  相似文献   

7.
Xu S  Offer G  Gu J  White HD  Yu LC 《Biochemistry》2003,42(2):390-401
Mammalian myosin filaments are helically ordered only at higher temperatures (>20 degrees C) and become progressively more disordered as the temperature is decreased. It had previously been suggested that this was a consequence of the dependence of the hydrolytic step of myosin ATPase on temperature and the requirement that hydrolysis products (e.g., ADP.P(i)) be bound at the active site. An alternative hypothesis is that temperature directly affects the conformation of the myosin heads and that they need to be in a particular conformation for helical order in the filament. To discriminate between these two hypotheses, we have studied the effect of temperature on the helical order of myosin heads in rabbit psoas muscle in the presence of nonhydrolyzable ligands. The muscle fibers were overstretched to nonoverlap such that myosin affinity for nucleotides was not influenced by the interaction of myosin with the thin filament. We show that with bound ADP.vanadate, which mimics the transition state between ATP and hydrolysis products, or with the ATP analogues AMP-PNP or ADP.BeF(x)() the myosin filaments are substantially ordered at higher temperatures but are reversibly disordered by cooling. These results reinforce recent studies in solution showing that temperature as well as ligand influence the equilibrium between multiple myosin conformations [Málnási-Csizmadia, A., Pearson, D. S., Kovács, M., Woolley, R. J., Geeves, M. A., and Bagshaw, C. R. (2001) Biochemistry 40, 12727-12737; Málnási-Csizmadia, A., Woolley, R. J., and Bagshaw, C. R. (2000) Biochemistry 39, 16135-16146; Urbanke, C., and Wray, J. (2001) Biochem. J. 358, 165-173] and indicate that helical order requires the myosin heads to be in the closed conformation. Our results suggest that most of the heads in the closed conformation are ordered, and that order is not produced in a separate step. Hence, helical order can be used as a signature of the closed conformation in relaxed muscle. Analysis of the dependence on temperature of helical order and myosin conformation shows that in the presence of these analogues one ordered (closed) conformation and two disordered conformations with distinct thermodynamic properties coexist. Low temperatures favor one disordered conformation, while high temperatures favor the ordered (closed) conformation together with a second disordered conformation.  相似文献   

8.
Notch ligands are membrane-spanning proteins made of a large extracellular region, a transmembrane segment, and a approximately 100-200 residue cytoplasmic tail. The intracellular region of Jagged-1, one of the five ligands to Notch receptors in man, mediates protein-protein interactions through the C-terminal PDZ binding motif, is involved in receptor/ligand endocytosis triggered by mono-ubiquitination, and, as a consequence of regulated intramembrane proteolysis, can be released into the cytosol as a signaling fragment. The intracellular region of Jagged-1 may then exist in at least two forms: as a membrane-tethered protein located at the interface between the membrane and the cytoplasm, and as a soluble nucleocytoplasmic protein. Here, we report the characterization, in different environments, of a recombinant protein corresponding to the human Jagged-1 intracellular region (J1_tmic). In solution, J1_tmic behaves as an intrinsically disordered protein, but displays a significant helical propensity. In the presence of SDS micelles and phospholipid vesicles, used to mimick the interface between the plasma membrane and the cytosol, J1_tmic undergoes a substantial conformational change. We show that the interaction of J1_tmic with SDS micelles drives partial helix formation, as measured by circular dichroism, and that the helical content depends on pH in a reversible manner. An increase in the helical content is observed also in the presence of vesicles made of negatively charged, but not zwitterionic, phospholipids. We propose that this partial folding may have implications in the interactions of J1_tmic with its binding partners, as well as in its post-translational modifications.  相似文献   

9.
Helical Bacillus subtilis macrofibers are highly ordered structures consisting of individual cells packed in a geometry remarkably similar to that found in helically twisted yarns (G. A. Carnaby, in J. W. S. Hearle et al., ed., The Mechanics of Flexible Fibre Assemblies, p. 99-112, 1980; N. H. Mendelson, Proc. Natl. Acad. Sci. U.S.A. 75:2478-2482, 1978). The growth and formation of macrofibers were studied with time-lapse microscopy methods. The basic growth mode consisted of fiber elongation, folding, and the helical wrapping together of the folded portion into a tight helical fiber. This sequence was reiterated at both ends of the structure, resulting in terminal loops. Macrofiber growth was accompanied by the helical turning of the structure along its long axis. Right-handed structures turned clockwise and left-handed ones turned counterclockwise when viewed along the length of a fiber looking toward a loop end. Helical turning forced the individual cellular filaments into a close-packing arrangement during growth. Tension was evident within the structures and they writhed as they elongated. Tension was relieved by folding, which occurred when writhing became so violent that the structure touched itself, forming a loop. When the multistranded structure produced by repeated folding cycles became too rigid for additional folding, the morphogenesis of a ball-like structure began. The dynamics of helical macrofiber formation was interpreted in terms of stress-strain deformations. In view of the similarities between macrofiber structures and those found in multifilament yarns and cables, the physics of helical macrofiber structure and also growth may be suitable for analysis developed in these fields concerning the mechanics of flexible fiber assemblies (C. P. Buckley; J. W. S. Hearle; and J. J. Thwaites, in J. W. S. Hearle et al., ed., The Mechanics of Flexible Fibre Assemblies, p. 1-97, 1980).  相似文献   

10.
The HDV ribozyme is an RNA enzyme from the human pathogenic hepatitis delta virus (HDV) that has recently also been identified in the human genome. It folds into a compact, nested double-pseudoknot. We examined here the functional relevance of the capping loop L4 and the helical crossover J1/2, which tightly interlace the two helical stacks of the ribozyme. Peripheral structural elements such as these are present in cis-acting, but not trans-acting ribozymes, which may explain the order-of-magnitude decrease in cleavage activity observed in trans-acting ribozymes with promise in gene therapy applications. Comparison of a systematic set of cis- and trans-acting HDV ribozymes shows that the absence of either L4 or J1/2 significantly and independently impacts catalytic activity. Using terbium(III) footprinting and affinity studies, as well as distance measurements based on time-resolved fluorescence resonance energy transfer, we find that J1/2 is most important for conferring structural properties similar to those of the cis-acting ribozyme. Our results are consistent with a model in which removal of either a helical crossover or surprisingly a capping loop induces greater dynamics and expansion of the catalytic core at long range, impacting local and global folding, as well as catalytic function.  相似文献   

11.
Purified RAG1 and RAG2 proteins can cleave DNA at V(D)J recombination signals. In dissecting the DNA sequence and structural requirements for cleavage, we find that the heptamer and nonamer motifs of the recombination signal sequence can independently direct both steps of the cleavage reaction. Proper helical spacing between these two elements greatly enhances the efficiency of cleavage, whereas improper spacing can lead to interference between the two elements. The signal sequences are surprisingly tolerant of structural variation and function efficiently when nicks, gaps, and mismatched bases are introduced or even when the signal sequence is completely single stranded. Sequence alterations that facilitate unpairing of the bases at the signal/coding border activate the cleavage reaction, suggesting that DNA distortion is critical for V(D)J recombination.  相似文献   

12.
Cleavage of V(D)J recombination signals by purified RAG1 and RAG2 proteins permits the dissection of DNA structure and sequence requirements. The two recognition elements of a signal (nonamer and heptamer) are used differently, and their cooperation depends on correct helical phasing. The nonamer is most important for initial binding, while efficient nicking and hairpin formation require the heptamer sequence. Both nicking and hairpin formation are remarkably tolerant of variations in DNA structure. Certain flanking sequences inhibit hairpin formation, but this can be bypassed by base unpairing, and even a completely single-stranded signal sequence is well utilized. We suggest that DNA unpairing around the signal-coding border is essential for the initiation of V(D)J combination.  相似文献   

13.
Infection with group A streptococci can result in acute and post-infectious pathology, including rheumatic fever and rheumatic heart disease. These diseases are associated with poverty and are increasing in incidence, particularly in developing countries and amongst indigenous populations, such as Australia's Aboriginal population, who suffer the highest incidence worldwide. Immunity to group A streptococci is mediated by antibodies against the M protein, a coiled-coil alpha helical surface protein of the bacterium. Vaccine development faces two substantial obstacles. Although opsonic antibodies directed against the N terminus of the protein are mostly responsible for serotypic immunity, more than 100 serotypes exist. Furthermore, whereas the pathogenesis of rheumatic fever is not well understood, increasing evidence indicates an autoimmune process. To develop a suitable vaccine candidate, we first identified a minimum, helical, non-host-cross-reactive peptide from the conserved C-terminal half of the protein and displayed this within a non-M-protein peptide sequence designed to maintain helical folding and antigenicity, J14 (refs. 8,9). As this region of the M protein is identical in only 70% of group A streptococci isolates, the optimal candidate might consist of the conserved determinant with common N-terminal sequences found in communities with endemic group A streptococci. We linked seven serotypic peptides with J14 using a new chemistry technique that enables the immunogen to display all the individual peptides pendant from an alkane backbone. This construct demonstrated excellent immunogenicity and protection in mice.  相似文献   

14.
A third chain, alpha 3(IV), of basement membrane collagen was recently discovered and was identified as the primary target for the autoantibodies of patients with Goodpasture syndrome (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, this chain was excised in the form of a truncated promoter by cleavage of basement membrane with Pseudomonas aeruginosa elastase and characterized. The triple helical structure and NC1 domain were retained. Elastase selectively cleaved at a site within the triple helical domain of the alpha 3 chain that is distinct from the cleavage site of the alpha 1 and alpha 2 chains. The truncated alpha 3 chain was found to contain 1460 residues, of which 1225 comprise the collagenous domain, and is cross-linked within this domain by disulfide bonds, forming a high Mr complex (greater than 300,000). Truncated protomers with a length of 340 nm corresponding to the theoretical length for the truncated alpha 3 chain were observed by electron microscopy as suprastructures in which the triple helical domains of three protomers were interwined. These protomers were also connected to each other and to the 140-nm protomers that appear to be comprised of the alpha 1 and alpha 2 chains. These results extended the known length of the alpha 3 chain by about 1000 residues and suggested that protomers of this chain self-associate through interactions between their triple helical domains and between their NC1 domains.  相似文献   

15.
16.
S Xu  J Gu  T Rhodes  B Belknap  G Rosenbaum  G Offer  H White    LC Yu 《Biophysical journal》1999,77(5):2665-2676
The thick filaments of mammalian and avian skeletal muscle fibers are disordered at low temperature, but become increasingly ordered into an helical structure as the temperature is raised. Wray and colleagues (Schlichting, I., and J. Wray. 1986. J. Muscle Res. Cell Motil. 7:79; Wray, J., R. S. Goody, and K. Holmes. 1986. Adv. Exp. Med. Biol. 226:49-59) interpreted the transition as reflecting a coupling between nucleotide state and global conformation with M.ATP (disordered) being favored at 0 degrees C and M.ADP.P(i) (ordered) at 20 degrees C. However, hitherto this has been limited to a qualitative correlation and the biochemical state of the myosin heads required to obtain the helical array has not been unequivocally identified. In the present study we have critically tested whether the helical arrangement of the myosin heads requires the M.ADP.P(i) state. X-ray diffraction patterns were recorded from skinned rabbit psoas muscle fiber bundles stretched to non-overlap to avoid complications due to interaction with actin. The effect of temperature on the intensities of the myosin-based layer lines and on the phosphate burst of myosin hydrolyzing ATP in solution were examined under closely matched conditions. The results showed that the fraction of myosin mass in the helix closely followed that of the fraction of myosin in the M.ADP.P(i) state. Similar results were found by using a series of nucleoside triphosphates, including CTP and GTP. In addition, fibers treated by N-phenylmaleimide (Barnett, V. A., A. Ehrlich, and M. Schoenberg. 1992. Biophys. J. 61:358-367) so that the myosin was exclusively in the M.ATP state revealed no helical order. Diffraction patterns from muscle fibers in nucleotide-free and in ADP-containing solutions did not show helical structure. All these confirmed that in the presence of nucleotides, the M.NDP.P(i) state is required for helical order. We also found that the spacing of the third meridional reflection of the thick filament is linked to the helical order. The spacing in the ordered M.NDP.P(i) state is 143.4 A, but in the disordered state, it is 144. 2 A. This may be explained by the different interference functions for the myosin heads and the thick filament backbone.  相似文献   

17.
The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an alpha-helical conformation has been predicted for this highly positively charged N-terminal region [Argos, P. (1981) Virology 110, 55-62; Vriend, G., Verduin, B. J. M., & Hemminga, M. A. (1986) J. Mol. Biol. 191, 453-460], no experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein [Ten Kortenaar, P. B. W., Krüse, J., Hemminga, M. A., & Tesser, G. I. (1986) Int. J. Pept. Protein Res. 27, 401-413]. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presence of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10 degrees C, a perceptible fraction of the conformational ensemble consists of structures with an alpha-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.  相似文献   

18.
It has been shown by us that oligonucleotides containing cyclonucleosides with a high anti glycosidic conformation take left-handed, single and double helical structures (S. Uesugi, J. Yano, E. Yano and M. Ikehara, J. Am. Chem. Soc. 99,2313 (1977) and references therein). In order to see whether DNA can adopt the high anti left-handed double helical structure or not, a self-complementary hexanucleotide containing 6,2'-O-cyclocytidine (C 0). 8,2'-O-cycloguanosine (G 0), deoxycytidine and deoxyguanosine, C 0 G 0 dCdGC 0 G 0, was synthesized. Corresponding hexanucleotide containing only cyclonucleosides, C 0 G 0 C 0 G 0 C 0 G 0, was also synthesized. Their conformation was examined by UV, CD and 1H NMR spectroscopy. C 0 G 0 C 0 G 0 C 0 G 0 forms an unusually stable, left-handed duplex. Imino proton NMR spectra and the results of nuclear Overhauser effect experiments strongly suggest that C 0 G 0 dCdGC0 G 0 take a left-handed double helical structure where the deoxynucleoside residues are involved in hydrogen bonding and take a high anti glycosidic conformation. Thus it is revealed that DNA could form a high anti, left-handed double helix which is different from that of Z-DNA under some constrained conditions.  相似文献   

19.
Popular programs for characterizing DNA structure include Curves 5.1 (Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn. 6, 63-91, 1988; Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn. 6, 655-67, 1989) and Freehelix98 (Dickerson, R. E., Nucleic Acids Res. 26, 1906-1926, 1998), along with the more recent 3DNA (X. J. Lu, Z. Shakked and W. K. Olson., J. Mol. Biol. 300, 819-840 (2000). Given input of structural coordinates, all of these programs return values of the local helical parameters, such as roll, tilt, twist, etc. The first two programs also provide characterization of global curvature. Madbend (Strahs, D. and Schlick, T., J. Mol. Biol. 301, 643-663, 2000), a program that computes global curvature from local roll, tilt, and twist parameters, can be applied to the output of all three structural programs. We have compared the curvature predicted by the three programs with and without the use of Madbend. Global bend magnitudes and directions as well as values of helical kinks were calculated for four high-resolution DNA structures and four model DNA helices. Global curvature determined by Curves 5.1 without Madbend was found to differ from values obtained using Freehelix98 with or without Madbend or 3DNA and Curves 5.1 with Madbend. Using model helices, this difference was attributed the fact that Curves 5.1 is the only program sensitive to changes in axial displacement, such as shift and slide. Madbend produced robust values of bend magnitude and direction, and displayed little sensitivity to axis displacement or the source of local helical parameters. Madbend also appears to be the method of choice for bending comparisons of high-resolution structures with results from cyclization kinetics, a method that measures DNA curvature as a vectorial sum of local roll and tilt angles.  相似文献   

20.
The kinetics of amide proton exchange (1H----2H) have been measured by proton nuclear magnetic resonance spectroscopy for a set of helical peptides with the generic formula Ac-(AAKAA)m Y-NH2 and with chain lengths varying from 6 to 51 residues. The integrated intensity of the amide resonances has been measured as a function of time in 2H2O at pH* 2.50. Exchange kinetics for these peptides can be modeled by applying the Lifson-Roig treatment for the helix-to-coil transition. The Lifson-Roig equation is used to compute the probability that each residue is helical, as defined by its backbone (phi, psi) angles. A recursion formula then is used to find the probability that the backbone amide proton of each residue is hydrogen bonded. The peptide helix can be treated as a homopolymer, and direct exchange from the helix can be neglected. The expression for the exchange kinetics contains only three unknown parameters: the rate constant for exchange of a non-hydrogen-bonded (random coil) backbone amide proton and the nucleation (v2) and propagation (w) parameters of the Lifson-Roig theory. The fit of the exchange curves to these three parameters is very good, and the values for v2 and w agree with those derived from circular dichroism studies of the thermally-induced unfolding of related peptides [Scholtz, J.M., Qian, H., York, E.J., Stewart, J.M., & Baldwin, R.L. (1991) Biopolymers (in press]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号