首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication. In the current study, we designed a panel of HSV-1 mutants, in which portions of UL13 and US3 genes were replaced by expression cassettes encoding mCherry protein or green fluorescent protein (GFP), respectively, and analyzed DNA replication, protein expression, and spread of these mutants in several cell types. Loss of US3 function alone had largely negligible effect on viral DNA accumulation, gene expression, virion release, and spread. Loss of UL13 function alone also had no appreciable effects on viral DNA levels. However, loss of UL13 function did result in a measurable decrease in the steady-state levels of two viral glycoproteins (gC and gD), release of total and infectious virions, and viral spread. Disruption of both genes did not affect the accumulation of viral DNA, but resulted in further reduction in gC and gD steady-state levels, and attenuation of viral spread and infectious virion release. These data show that the UL13 kinase plays an important role in the late phase of HSV-1 infection, likely by affecting virion assembly and/or release. Moreover, the data suggest that the combined activities of the US3 and UL13 protein kinases are critical to the efficient assembly and release of infectious virions from HSV-1-infected cells.  相似文献   

5.
6.
7.
8.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins are required for the expression of viral early and late proteins. It has been hypothesized that host neuronal proteins regulate expression of HSV-1 IE genes that in turn control viral latency and reactivation. We investigated the ability of neuronal proteins in vivo to activate HSV-1 IE gene promoters (ICP0 and ICP27) and a late gene promoter (gC). Transgenic mice containing IE (ICP0 and ICP27) and late (gC) gene promoters of HSV-1 fused to the Escherichia coli beta-galactosidase coding sequence were generated. Expression of the ICP0 and ICP27 reporter transgenes was present in anatomically distinct subsets of neurons in the absence of viral proteins. The anatomic locations of beta-galactosidase-positive neurons in the brains of ICP0 and ICP27 reporter transgenic mice were similar and included cerebral cortex, lateral septal nucleus, cingulum, hippocampus, thalamus, amygdala, and vestibular nucleus. Trigeminal ganglion neurons were positive for beta-galactosidase in adult ICP0 and ICP27 reporter transgenic mice. The ICP0 reporter transgene was differentially regulated in trigeminal ganglion neurons depending upon age. beta-galactosidase-labeled cells in trigeminal ganglia and cerebral cortex of ICP0 and ICP27 reporter transgenic mice were confirmed as neurons by double labeling with antineurofilament antibody. Nearly all nonneuronal cells in ICP0 and ICP27 reporter transgenic mice and all neuronal and nonneuronal cells in gC reporter transgenic mice were negative for beta-galactosidase labeling in the absence of HSV-1. We conclude that factors in neurons are able to differentially regulate the HSV-1 IE gene promoters (ICP0 and ICP27) in transgenic mice in the absence of viral proteins. These findings are important for understanding the regulation of the latent and reactivated stages of HSV-1 infection in neurons.  相似文献   

9.
The human cytomegalovirus (HCMV) US12 gene family comprises a set of 10 contiguous genes (US12 to US21), each encoding a predicted seven-transmembrane protein and whose specific functions have yet to be ascertained. While inactivation of individual US12 family members in laboratory strains of HCMV has not been found to affect viral replication in fibroblasts, inactivation of US16 was reported to increase replication in microvascular endothelial cells. Here, we investigate the properties of US16 further by ascertaining the expression pattern of its product. A recombinant HCMV encoding a tagged version of the US16 protein expressed a 33-kDa polypeptide that accumulated with late kinetics in the cytoplasmic virion assembly compartment. To elucidate the function(s) of pUS16, we generated US16-deficient mutants in the TR clinical strain of HCMV. According to previous studies, inactivation of US16 had no effect on viral replication in fibroblasts. In contrast, the US16-deficient viruses exhibited a major growth defect in both microvascular endothelial cells and retinal pigment epithelial cells. The expression of representative IE, E, and L viral proteins was impaired in endothelial cells infected with a US16 mutant virus, suggesting a defect in the replication cycle that occurs prior to IE gene expression. This defect must be due to an inefficient entry and/or postentry event, since pp65 and viral DNA did not move to the nucleus in US16 mutant-infected cells. Taken together, these data indicate that the US16 gene encodes a novel virus tropism factor that regulates, in a cell-specific manner, a pre-immediate-early phase of the HCMV replication cycle.  相似文献   

10.
11.
Earlier studies have described the alpha 4/c113 baby hamster kidney cell line which constitutively expresses the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1). Introduction of the HSV-1 glycoprotein B (gB) gene, regulated as a gamma 1 gene, into these cells yielded a cell line which constitutively expressed both the alpha 4 and gamma 1 gB genes. The expression of the gB gene was dependent on the presence of functional alpha 4 protein. In this article we report that we introduced into the alpha 4/c113 and into the parental BHK cells, the HSV-1 BamHI J fragment, which encodes the domains of four genes, including those of glycoproteins D, G, and I (gD, gG, and gI), and most of the coding sequences of the glycoprotein E (gE) gene. In contrast to the earlier studies, we obtained significant constitutive expression of gD (also a gamma 1 gene) in a cell line (BJ) derived from parental BHK cells, but not in a cell line (alpha 4/BJ) which expresses functional alpha 4 protein. RNA homologous to the gD gene was present in significant amounts in the BJ cell line; smaller amounts of this RNA were detected in the alpha 4/BJ cell line. RNA homologous to gE, presumed to be polyadenylated from signals in the vector sequences, was present in the BJ cells but not in the alpha 4/BJ cells. The expression of the HSV-1 gD and gE genes was readily induced in the alpha 4/BJ cells by superinfection with HSV-2. The BJ cell line was, in contrast, resistant to expression of HSV-1 and HSV-2 genes. The BamHI J DNA fragment copy number was approximately 1 per BJ cell genome equivalent and 30 to 50 per alpha 4/BJ cell genome equivalent. We conclude that (i) the genes specifying gD and gB belong to different viral regulatory gene subsets, (ii) the gD gene is subject to both positive and negative regulation, (iii) both gD and gE mRNAs are subject to translational controls although they may be different, and (iv) the absence of expression of gD in the alpha 4/BJ cells reflects the expression of the alpha 4 protein in these cells.  相似文献   

12.
Herpes simplex virus type 1 (HSV-1) mutants defective in immediate-early (IE) gene expression do not readily enter productive replication after infection of tissue culture cells. Instead, their genomes are retained in a quiescent, nonreplicating state in which the production of viral gene products cannot be detected. To investigate the block to virus replication, we used the HSV-1 triple mutant in1820K, which, under appropriate conditions, is effectively devoid of the transactivators VP16 (a virion protein), ICP0, and ICP4 (both IE proteins). Promoters for the HSV-1 IE ICP0 gene or the human cytomegalovirus (HCMV) major IE gene, cloned upstream of the Escherichia coli lacZ coding sequences, were introduced into the in1820K genome. The regulation of these promoters and of the endogenous HSV-1 IE promoters was investigated upon conversion of the virus to a quiescent state. Within 24 h of infection, the ICP0 promoter became much less sensitive to transactivation by VP16 whereas the same element, when used to transform Vero cells, retained its responsiveness. The HCMV IE promoter, which is not activated by VP16, also became less sensitive to the HCMV functional homolog of VP16. Both elements remained available for transactivation by HSV-1 IE proteins at 24 h postinfection, showing that the in1820K genome was not irreversibly inactivated. The promoters controlling the HSV-1 ICP4, ICP22, and ICP27 genes also became essentially unresponsive to transactivation by VP16. The ICP0 promoter was induced when hexamethylene bisacetamide was added to cultures at the time of infection, but the response to this agent was also lost by 24 h after infection. Therefore, promoter elements within the HSV-1 genome are actively repressed in the absence of IE gene expression, and repression is not restricted specifically to HSV-1 IE promoters.  相似文献   

13.
We produced insertion mutants of herpes simplex virus (HSV) that contain two functional copies of genes encoding different forms of glycoprotein D (gD). These viruses have the gene for HSV type 2 (HSV-2) gD at the normal locus and the gene for HSV-1 gD inserted into the thymidine kinase locus. Results of immunoprecipitation experiments done with monoclonal antibodies revealed that both gD genes were expressed by these viruses, regardless of orientation of the inserted HSV-1 gD gene, and that maximal synthesis of both glycoproteins depended on viral DNA replication. This apparently normal expression of the inserted HSV-1 gD gene was from a DNA fragment (SacI fragment, 0.906 to 0.924 map units) containing nucleotide sequences extending from approximately 400 base pairs upstream of the 5' end of the gD mRNA to about 200 base pairs upstream of the 3' end. The glycoproteins expressed from both genes were incorporated into the surfaces of infected cells. Electrophoretic analyses of purified virions and neutralization studies suggest that both glycoproteins were also incorporated into virions. This nonpreferential utilization of both gene products makes these viruses ideal strains for the generation and characterization of a variety of mutations.  相似文献   

14.
To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, we examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. Analysis of promoter deletion mutants indicated that the 5' minimal sequence required for activation is -61 from the CAP site (+1) and that an 8-base-pair sequence located at -51 to -58 is necessary for activation of the pp65 promoter. This sequence is repeated once at +93 and is found as an inverted repeat at +67. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene.  相似文献   

15.
16.
The human cytomegalovirus (HCMV) XbaI E cloned DNA fragment of approximately 20 kilobases can complement an adenovirus mutant (dl312) defective in the E1a viral gene product (D. J. Spector and M. J. Tevethia, Virology 151:329-338, 1986). This viral DNA fragment contains three immediate-early (IE) genes between 0.709 and 0.751 map units (M. F. Stinski, D. R. Thomsen, R. M. Stenberg, and L. C. Goldstein, J. Virol. 46:1-14, 1983). Two of the IE genes, IE1 and IE2, were isolated and tested for a role in regulating viral gene expression. Since HCMV early and late promoters require additional characterization, the chloramphenicol acetyl transferase (cat) gene, driven by the adenovirus E2 promoter, was used as an indicator of gene expression. cat expression from this heterologous viral promoter was shown to be stimulated by HCMV at early times after infection. The IE1 gene product did not function independently in activating this promoter. The IE2 gene products could independently stimulate the expression of a plasmid of a plasmid when the cat gene was placed downstream of the inducible E2 promoter (E2CAT). Five proteins of different sizes have been predicted to originate from IE2, depending on mRNA splicing. The protein products specified by the IE2 gene were characterized with an antibody to a synthetic peptide according to the open reading frame of exon 2. Three of the five proteins are encoded by exon 2. Three viral proteins of 82, 54, and 28 kilodaltons (kDa) were detected. The exons contained in the region designated as IE2a have open reading frames that could code for two of the smaller proteins of 27 and 30 kDa. This region, when driven by the HCMV enhancer, could independently stimulate gene expression from E2CAT to a high level. A plasmid with the HCMV enhancer upstream of exons, that could code for the HCMV IE2 proteins of 48 and 51 kDa, as well as 27- and 30-kDa proteins, also stimulated E2CAT expression but at a lower level. The activity of this plasmid was augmented by the IE1 gene product, despite the fact that the latter gene product alone was inactive. It is proposed that the HCMV IE region 2 gene products are involved in the regulation of viral or host cell promoters either independently or in combination with other HCMV IE proteins.  相似文献   

17.
18.
19.
A baby hamster kidney [BHK(tk-)] cell line (US11cl19) which stably expresses the US11 and alpha 4 genes of herpes simplex virus 1 strain F [HSV-1(F)] was found to be resistant to infection with HSV-1. Although wild-type HSV-1(F) attached with normal kinetics to the surface of US11cl19 cells, most cells showed no evidence of infection and failed to accumulate detectable amounts of alpha mRNAs. The relationship between the expression of UL11 and resistance to HSV infection in US11cl19 cells has not been defined, but the block to infection with wild-type HSV-1 was overcome by exposing cells with attached virus on their surface to the fusogen polyethylene glycol, suggesting that the block to infection preceded the fusion of viral and cellular membranes. An escape mutant of HSV-1(F), designated R5000, that forms plaques on US11cl19 cells was selected. This mutant was found to contain a mutation in the glycoprotein D (gD) coding sequence that results in the substitution of the serine at position 140 in the mature protein to asparagine. A recombinant virus, designated R5001, was constructed in which the wild-type gD gene was replaced with the R5000 gD gene. The recombinant formed plaques on US11cl19 cells with an efficiency comparable to that of the escape mutant R5000, suggesting that the mutation in gD determines the ability of the mutant R5000 to grow on US11cl19 cells. The observation that the US11cl19 cells were slightly more resistant to fusion by polyethylene glycol than parental BHK(tk-) cells led to the selection and testing of clonal lines from unselected and polyethylene glycol-selected BHK(tk-) cells. The results were that 16% of unselected to as much as 36% of the clones selected for relative resistance to polyethylene glycol fusion exhibited various degrees of resistance to infection. The exact step at which the infection was blocked is not known, but the results illustrate the ease of selection of cell clones with one or more sites at which infection could be blocked.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号