首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of two Ni concentrations (10 and 200 μM) on growth, Ni accumulation, chlorophyll and proline contents, relative water content (RWC) as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione S-transferase (GST) were studied in shoots of wheat plants. Treatments caused a considerable accumulation of Ni in the shoots. However, exposure of plants to 10 μM Ni did not lead to significant alterations in shoot growth except for a slight increase in fresh mass. The other parameters studied were not affected by treatment of plants with 10 μM Ni. In contrast, 200 μM Ni caused inhibition of shoot growth, a decline in RWC and chlorophyll content, accumulation of proline and occurrence of visible symptoms of Ni toxicity. The activities of SOD and CAT decreased in response to 200 μM Ni. Conversely, several-fold enhancements of POD and GST activities were observed following the 3rd day of 200 μM Ni treatment.  相似文献   

2.
Wheat (Triticum aestivum L. cv. ‘Zyta’) seedlings were treated with 10, 100 and 200 μM Ni. Tissue Ni accumulation, length, relative water content (RWC), proline and H2O2 concentrations as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and glutathione S-transferase (GST) were studied in the shoots and roots after 6 days of Ni exposure. Treatment with Ni, except for its lowest concentration, resulted in a significant reduction in wheat growth. In comparison to the shoots, the roots showed greater inhibition of elongation, which corresponded with higher accumulation of Ni in these organs. Both shoots and roots responded to Ni application with a decrease in RWC and enhancement in proline concentration. Greater dehydration of the shoot tissue was accompanied by more intense accumulation of proline. Treatment of the wheat seedlings with the highest concentration of Ni led to about 60% increase in H2O2 concentration in both studied organs. Apart from CAT, constitutive activities of antioxidative enzymes were much higher in the roots than in the shoots. Exposure of the seedlings to Ni resulted in SOD activity decline, which was more marked in the roots. While the shoots showed a substantial decrease (up to 30%) in CAT activity, in the roots the activity of this enzyme remained unchanged. After Ni application APX, POD and GST activities increased several-fold in the shoots, whereas in the roots they were not significantly altered. The results suggest that differential antioxidative responses of the shoots and roots of wheat seedlings to Ni stress might be related to diverse constitutive levels of antioxidant enzyme activities in both organs.  相似文献   

3.
Lipid peroxidation in relation to toxicity of detached rice leavescaused by excess iron (FeSO4) was investigated. ExcessFeSO4, which was observed to induce toxicity, enhanced the contentoflipid peroxidation but not the content of H2O2.Superoxidedismutase activity was reduced by excess FeSO4. Ascorbate peroxidaseand glutathione reductase activities were increased by excess FeSO4.Free radical scavengers, such as mannitol and reduced glutathione, inhibitedexcess iron-induced toxicity and at the same time inhibited excessiron-enhancedlipid peroxidation, suggesting that lipid peroxidation enhanced by excess ironis mediated through free radicals.  相似文献   

4.
5.
以扬麦16和徐麦30为试验材料,利用人工气候室模拟低温逆境,研究拔节期-3 ℃和-5 ℃低温胁迫对小麦植株受冻率、叶片内源激素含量和抗氧化酶活性的影响.结果表明: 随着处理温度的降低、胁迫时间的延长,小麦植株冻害等级与冻害指数增加,-5 ℃处理72 h两品种五级冻害率均为100%.低温处理结束当天,小麦叶片中内源激素脱落酸(ABA)、玉米素核苷(ZR)含量、抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性随胁迫程度加重呈先升高后降低的趋势;处理结束后3 d,ABA、ZR含量及抗氧化酶活性较处理结束当天升高;至处理结束后6 d,与自然生长的对照处理接近.低温胁迫叶片中赤霉素(GA3)含量下降,处理结束后3和6 d,扬麦16叶片中GA3含量呈上升趋势,徐麦30则表现为先升高后下降.-5 ℃ 72 h重度胁迫处理叶片中ABA、ZR、GA3含量和SOD、POD、CAT活性均较对照显著下降.相关分析表明,较高的ABA、ZR含量、SOD、POD、CAT活性以及较低的GA3含量可减缓低温胁迫对小麦植株的伤害.  相似文献   

6.
Abstract

In a hydroponic system, experiments were conducted to study the effect of different levels of mercury treatments (0, 5, 10, 25 and 50 µM Hg) on Indian mustard (Brassica juncea L. Czern & Coss.) cv. Pusa Jai Kisan. Concentration-dependent inhibitory effects were observed on growth characteristics (plant dry mass, leaf area, shoot and root length). These were accompanied by an increase in shoot Hg content and in oxidative stress characteristics such as the MDA and H2O2 levels. The plant growth decreased maximally at 50 µM of Hg. Despite a reduction in growth, activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were enhanced with increase in Hg-treatments. The Hg-induced alterations in growth are linked with increase in lipid peroxidation (MDA and H2O2), whereas the enhancement in activities of antioxidant enzymes protects plants from Hg-induced oxidative stress.  相似文献   

7.
研究了低温(0~5℃)胁迫下钼对冬小麦抗氧化系统和膜脂过氧化的影响。结果表明,低温胁迫下施钼植株电解质渗漏率和丙二醛含量显著降低。施用钼肥提高了冬小麦叶片中抗氧化酶类如超氧化物歧化酶(SOD,EC1.15.1.1)、过氧化物酶(POX,EC1.11.1.7)和过氧化氢酶(CAT,ECl.11.1.6)的活性。低温胁迫下施钼对抗氧化酶(SOD、POX和CAT)活性提高幅度比常温下高。不论常温还是低温下,施铝均提高了冬小麦叶片中抗坏血酸和脯氨酸含量,低温胁迫下提高幅度更大。常温下缺钼和施钼处理后,叶片中类胡萝卜素含量差异不显著;低温下施钼后,冬小麦叶片类胡萝卜素含量显著增加。因此,低温胁迫下施钼植株活性氧清除能力增强、细胞膜伤害减轻可能是冬小麦抗寒力提高的原因之一。  相似文献   

8.
Nitrogen availability is closely related to crop senescence and productivity, but its associated effect on reserve remobilization is not yet fully understood. In this study, we observed that nitrogen deficiency (N?) led to significant decreases in the activities of superoxide dismutase (SOD) (P<0.05), guaiacol peroxidase (P<0.05), and catalase (P<0.05) as well as a higher concentration of reactive oxygen species (ROS) (P<0.05) in wheat (Triticum aestivum L.) peduncles during the middle grain-filling compared with the application of 225 kg N ha?1 (N+). Callose concentration showed the same trend of temporal changes as ROS. Histochemical staining revealed that both ROS and callose predominantly occurred in vascular bundles of peduncles. Ultimately, grain filling rates and grain weight in N? wheat were reduced compared with N+ plant. These data suggest that the grain yield decline in N? wheat may be at least partially attributed to the higher callose deposition in peduncle vascular bundles and ROS level is closely associated with the increase in the callose deposition in wheat peduncle vascular bundles.  相似文献   

9.
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.This work was partially supported by Swiss National Science Foundation (Project 31-55289.98).  相似文献   

10.
铁镉互作对水稻脂质过氧化及抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
利用营养液培养方法,以‘沈农265’为供试品种,研究不同Fe(0、0.1、0.25、0.5mmolFe2+·L-1)、Cd(0、0.1、1.0μmolCd2+·L-1)处理对水稻植株体内脂质过氧化及抗氧化酶活性的影响.结果表明:单独供应Fe显著降低了水稻地上部和根系生物量,同时供应Cd后生物量不再下降;单独供应Cd降低了根系中丙二醛(MDA)和可溶性蛋白含量,而同时供应Fe时这种降低作用消失.Fe处理降低了水稻地上部和根系Cd含量,Cd处理也降低了Fe含量,两者表现出明显的相互抑制作用.高Cd(1.0μmol·L-1)和Fe互作,增加了水稻根系中MDA和可溶性蛋白含量,降低了超氧化物岐化酶(SOD)和过氧化氢酶(CAT)活性.表明在低Cd环境中为水稻提供一定数量的外源Fe能降低植株Cd含量;但高Cd胁迫将降低水稻对Fe的吸收,并导致植株体内产生脂质过氧化.  相似文献   

11.
Indole acetic acid (IAA) is an auxin and can be synthesized in animals. This compound is metabolized in vitro by peroxidase, producing reactive oxygen species. The toxic effect of indole acetic acid in leukocytes is associated with peroxidase activities and these processes have been implicated in activation of glucose and glutamine metabolism. However, studies in vitro have shown that IAA, in absence of peroxidase, is an antioxidant almost as high in potency as those of other indolic compounds. The purpose of this study was to investigate the possible involvement of a toxic effect of indole acetic acid in the liver, as evidenced by oxidative stress and enzyme activities of the glucose pathway. The animals received IAA by subcutaneous or gavage administration in a phosphate buffered saline (the control group received only the phosphate buffered saline). The other groups received IAA at concentrations of 1 mg, 18 mg and 40 mg per kg of body mass per day. Treatments with 18 mg and 40 mg IAA decreased the activity of catalase by both subcutaneous (30% and 26%) or gavage administration (19% and 28%), respectively. A similar effect was observed on the activity of glutathione peroxidase of animals exposed to 18 mg and 40 mg IAA: A decrease of 34% and 29%, respectively, for subcutaneous administration and a decrease of 29% and 25%, respectively, for gavage administration. However, in neither source of administration did the acid alter superoxide dismutase, glutathione reductase and myeloperoxidase activities. Another alteration was observed in respect of reduced glutathione content in this organ. The lipid peroxidation level showed a significant decrease with subcutaneous (30%, 29% and 24%) and gavage administration (25%, 26% and 24%) using 1 mg, 18 mg and 40 mg of IAA, respectively compared with the control. The reduced glutathione content and catalase activity in the plasma were not altered by either of the two methods of administration. In addition to these findings, after subcutaneous or gavage administration of IAA, the activities of hepatic enzymes of glucose metabolism were not affected (glucokinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase and citrate synthase). Evidence is presented herein that IAA did not have a pro-oxidant effect in the liver as deduced from a reduction of catalase and glutathione peroxidase activities, a decrease of lipid peroxidation content and no alteration of the pool of reduced glutathione. The effects of IAA were independent of the way of administration.  相似文献   

12.
Physiological effects of lanthanum ions on the activities of the enzymes in the reactive oxygen species (ROS) scavenging system in leaves of wheat (Triticum aestivum L.) seedlings were studied. Wheat leaves treated in Hogland solution with 0.1 mM LaCl3 for 48 h showed increased levels of superoxide dismutase (SOD), catalase (CAT), ascorbate-specific peroxidase (AsA-POD), and dehydroascorbate reductase (DHAR). However, a minor effect was observed on the levels of monodehydroascorbate reductase (MDAR) and glutathione reductase (GR), which regulate the release of energy required by the ROS scavenging system. The whole system was linked up by H+ transmission. Our results indicated that the activities of the enzymes that function directly to remove ROS were elevated by La3+ treatment, which is consistent with the observations that La3+-treated plants had increased tolerance to environmental stresses. The remaining levels of MDAR and GR suggested that these two enzymes might be regulated differently from that of the other four enzymes studied.  相似文献   

13.
Summary The relationship of peroxidase activity with plant height and grain weight has been studied in seven different varieties of bread wheat belonging to diverse genotypes, and their F1 crosses. The association between plant height and peroxidase activity was highly significant and negative. Based on the similarity index values of peroxidase isoenzymes, the seven wheat genotypes could be classified into two groups: the first group consisting of triple and quadruple dwarf varieties and the other of tall, single and double dwarf. A negative correlation between peroxidase activity and grain weight was also observed. However, the results of this study indicate a possibility of developing a dwarf plant type with low peroxidase activity and well filled grains.  相似文献   

14.
Summary Leaves of young seedlings of a number of tall cultivars of wheat, lacking the dwarfing Rht genes, readily responded to a brief 2 min exposure to CO, as assessed by in vivo aerobic assay of nitrate reductase. This test depends on the inhibition of cytochrome c oxidase by CO, which in turn renders cytosolic NADH available for the reduction of nitrate to nitrite in vivo. Semi-dwarf cultivars of wheat (Rht present) did not respond to CO in this way. Since CO forms a complex only with reduced cytochrome a3, the results indicate differences in the redox state of cytochrome a3, during in situ respiration of leaves from tall and semi-dwarf plants which are likely to be under genetic control.  相似文献   

15.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

16.
An equal concentration (100 μM) of Cr(III)- and Cr(VI)-induced changes in activities of antioxidative enzymes and metabolites of ascorbate-glutathione cycle was studied in 7-d-old black gram (Vigna mungo L Hepper cv. Co4) seedlings for 5-d after infliction of Cr stress. Seeds were germinated and grown in the presence or absence of Cr under controlled environmental conditions. Uptake and translocation of Cr rate was relatively higher during first 12 h of treatment with both speciation of Cr, Cr(III)- and Cr(VI)-treated black gram roots retained 15 times more Cr than the shoots. Significantly increased lipid peroxidation was observed in the form of accumulation of malondialdehyde (MDA) and production of hydrogen peroxide (H2O2) molecule and superoxide (O2 ) radical after 6 h of infliction with Cr(VI) and after 12 h in Cr(III)-treated black gram roots. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were significantly increased under Cr(VI)-treatment after 12 and 6 h, respectively. However, catalase (CAT) and monodehydroascorbate reductase (MDHAR) activities were not significantly increased under Cr(Ill)-treatment. There was a steep increase of 2.71 μmol g-1 FW in ascorbic acid (AA) content was observed between 6 and 24 h of Cr(VI)-treatment. Oxidized glutathione (GSSG) content was steadily increased through the course of Cr(III)- and Cr(VI)-treatments, where as reduced glutathione (GSH) level was decreased after 24 h of treatment. GSH/GSSG ratio was rapidly decreased in treatment with Cr(III) than the Cr(VI). There was significant increase of 99 nmol g-1 FW in non-protein thiol (NPT) content was recorded between 6 and 24 h of Cr(VI)-treatment. The present results showed differential response to AA and H2O2 signaling by Cr(III) and Cr(VI), AA in combination with APX was more effective in mitigating oxidative stress as against the role of GSH as an antioxidant.  相似文献   

17.
Protein pattern, ammonia content, glutamine synthetase activity, lipid peroxidation, superoxide dismutase, catalase, peroxidase and peroxidase isoforms were studied in the leaves and roots of 7-d-old peanut (Arachis hypogaea L. cv. JL-24) seedlings treated by 25, 100 and 250 μM jasmonic acid (JA). SDS-PAGE protein profile of leaves and roots after JA application showed a significant increase in 18, 21, 30, 45, 47 and 97.4 kDa proteins and significant decrease in 22 and 36 kDa proteins. Pathogenesis related PR-18 was specific in leaves at 250 μM JA and PR-21 have cross reacted differently with 21 and 30 kDa proteins in leaves and roots treated by all JA concentrations. Further, the immunoblot analysis with glutamine synthetase, GS-45 antibodies revealed a specific cross reaction with 45 and 47 kDa proteins of both control and JA treated leaves, however, higher at 100 and 250 μM JA treated leaves than control ones. Further, the malondialdehyde (MDA) content significantly increased in leaves and roots treated with JA, indicated membrane damage with JA treatments that led to the generation of peroxidation products. The peroxidase isozymic pattern showed two specific isoforms. Besides, the activities of SOD and catalase were significantly elevated in JA treated leaves.  相似文献   

18.
Summary The most widely used technique of leaf water potential measurements is with the Scholander pressure chamber. Representative leaf water potential values require many determinations on individual leaves and this can be time consuming in large fields or experiments with multiple treatments. This paper describes a method of obtaining a mean value more rapidly, by using two leaves in the pressure chamber at the same time, but recording the end point of each leaf separately.  相似文献   

19.
This study was undertaken to investigate the effects of zinc on lipid peroxidation and various antioxidative enzymes in the intestines of male Wistar rats fed on ethanol. It was observed that NADPH-dependent lipid peroxidation (LP) was significantly increased upon ethanol treatment for 4 and 8 wk. The concentraton of glutathione as well as the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were also found to be significantly increased upon ethanol feeding at all of the treatment intervals. The glutathione levels were found to be further elevated upon combined zinc and ethanol treatments. Interestingly, the administration of zinc to ethanol-fed rats was able to bring down the elevated levels of LP, catalase, SOD, and GPx, thus indicating the antiperoxidative potential of zinc under such conditions.  相似文献   

20.
The present investigation was undertaken in order to select the surface-sterilization technique most efficient for eliminating epiphytes, to document the spectrum of endophytes of healthy leaves from three wheat cultivars in Buenos Aires Province (Argentina) and to determine their infection frequencies at three growth stages. Surface-sterilization with undiluted commercial solution of sodium hypochlorite was reaffirmed as adequate for removing epiphytes on wheat leaves. From the 450 wheat leaf segments incubated, three bacterial isolates and 130 fungal isolates were obtained. From all the isolates, 19 fungal species were identified. Bacterial isolates were characterized as Bacillus sp. There were significant differences between microorganisms, stages of growth, and stages × microorganisms interaction. Differences between cultivars, stages × cultivars, microorganisms × cultivars and for the triple interaction were not significant. Frequency of microorganisms isolated increased with crop age, but it was statistically similar for the three wheat cultivars tested (Klein Centauro, Klein Dragón and Buck Ombú). Rhodotorula rubra, Alternaria alternata, Cladosporium herbarum and Epicoccum nigrum were isolated in the highest frequency. The other microorganisms were present at intermediate or low values. The species isolated may be assigned to three groups: (a) well-known and economically important pathogens of wheat, (b) commonly abundant phylloplane fungi considered to be primary saprobic and minor pathogens and (c) species occasionally present in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号