共查询到20条相似文献,搜索用时 15 毫秒
1.
Kasahara K Nakayama Y Nakazato Y Ikeda K Kuga T Yamaguchi N 《The Journal of biological chemistry》2007,282(8):5327-5339
Src family non-receptor-type tyrosine kinases regulate a wide variety of cellular events including cell cycle progression in G(2)/M phase. Here, we show that Src signaling regulates the terminal step in cytokinesis called abscission in HeLa cells. Abscission failure with an unusually elongated intercellular bridge containing the midbody is induced by treatment with the chemical Src inhibitors PP2 and SU6656 or expression of membrane-anchored Csk chimeras. By anti-phosphotyrosine immunofluorescence and live cell imaging, completion of abscission requires Src-mediated tyrosine phosphorylation during early stages of mitosis (before cleavage furrow formation), which is subsequently delivered to the midbody through Rab11-driven vesicle transport. Treatment with U0126, a MEK inhibitor, decreases tyrosine phosphorylation levels at the midbody, leading to abscission failure. Activated ERK by MEK-catalyzed dual phosphorylation on threonine and tyrosine residues in the TEY sequence, which is strongly detected by anti-phosphotyrosine antibody, is transported to the midbody in a Rab11-dependent manner. Src kinase activity during the early mitosis mediates ERK activation in late cytokinesis, indicating that Src-mediated signaling for abscission is spatially and temporally transmitted. Thus, these results suggest that recruitment of activated ERK, which is phosphorylated by MEK downstream of Src kinases, to the midbody plays an important role in completion of abscission. 相似文献
2.
Mona Pache Barbara Zieger Susanne Bl?ser Peter Meyer 《The journal of histochemistry and cytochemistry》2005,53(9):1139-1147
We aimed to examine the distribution of SEPT4, SEPT5, and SEPT8 in the human eye. For each septin, five to six normal human eyes were examined by immunohistochemical staining of paraffin sections using polyclonal antibodies against SEPT4, SEPT5, and SEPT8 and an avidin biotin complex immunodetection system. SEPT4 immunoreactivity (IR) was detected primarily in the epithelium of cornea, lens, and nonpigmented ciliary epithelium; in the endothelium of cornea and vessels of iris and retina; and in the retinal nerve fiber layer, the outer plexiform layer, the outer segments of the photoreceptor cells, the inner limiting membrane of the optic nerve head, and optic nerve axons. SEPT5-IR was present in corneal endothelial cells, iris tissue, nonpigmented ciliary epithelium, and epithelial cells of the lens. SEPT8-IR almost paralleled that of SEPT4, except for a lower SEPT8-IR of the outer photoreceptor segments and a positive staining of the meningothelial cell nests in the subarachnoidal space of the bulbar segment of the orbital optic nerve. In conclusion, SEPT4, SEPT5, and SEPT8 are expressed in various ocular tissues, each revealing a distinct expression pattern. Both physiological and potential pathophysiological role of septins in the human eye deserve further investigation. 相似文献
3.
Masayuki Onishi Nolan Ko Ryuichi Nishihama John R. Pringle 《The Journal of cell biology》2013,202(2):311-329
In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis. 相似文献
4.
5.
Rebecca A. Green Jonathan R. Mayers Shaohe Wang Lindsay Lewellyn Arshad Desai Anjon Audhya Karen Oegema 《The Journal of cell biology》2013,203(3):505-520
Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution. 相似文献
6.
Septins comprise a eukaryotic guanine nucleotide binding protein subfamily which form filamentous heteropolymer complexes. Although mechanism of cytokinesis is diverged by species and tissues, loss of septin function results in the multinuclear phenotype in many organisms. Hence septin filaments beneath the cleavage furrow are hypothesized as a structural basis to ensure completion of cytokinesis. However, molecular mechanisms of septin assembly, disassembly and function have been elusive despite the potential importance of this ubiquitous cytoskeletal system. Meanwhile, growing evidence suggests that mammalian septins functionally or physically interact with diverse molecules such as actin, actin-binding proteins, proteins of membrane fusion machinery, Cdc42 adapter proteins, a ubiquitin-protein ligase, and phosphoinositides. Careful integration of these data may provide insights into the mechanism of mammalian septin organization and functions in cytokinesis. 相似文献
7.
Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis 总被引:1,自引:0,他引:1
下载免费PDF全文

We report here an efficient functional genomic analysis by combining information on the gene expression profiling, cellular localization, and loss-of-function studies. Through this analysis, we identified Cep55 as a regulator required for the completion of cytokinesis. We found that Cep55 localizes to the mitotic spindle during prometaphase and metaphase and to the spindle midzone and the midbody during anaphase and cytokinesis. At the terminal stage of cytokinesis, Cep55 is required for the midbody structure and for the completion of cytokinesis. In Cep55-knockdown cells, the Flemming body is absent, and the structural and regulatory components of the midbody are either absent or mislocalized. Cep55 also facilitates the membrane fusion at the terminal stage of cytokinesis by controlling the localization of endobrevin, a v-SNARE required for cell abscission. Biochemically, Cep55 is a microtubule-associated protein that efficiently bundles microtubules. Cep55 directly binds to MKLP1 in vitro and associates with the MKLP1-MgcRacGAP centralspindlin complex in vivo. Cep55 is under the control of centralspindlin, as knockdown of centralspindlin abolished the localization of Cep55 to the spindle midzone. Our study defines a cellular mechanism that links centralspindlin to Cep55, which, in turn, controls the midbody structure and membrane fusion at the terminal stage of cytokinesis. 相似文献
8.
Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization
下载免费PDF全文

The septins are a conserved family of proteins that are involved in cytokinesis and other aspects of cell-surface organization. In Drosophila melanogaster, null mutations in the pnut septin gene are recessive lethal, but homozygous pnut mutants complete embryogenesis and survive until the pupal stage. Because the completion of cellularization and other aspects of early development seemed likely to be due to maternally contributed Pnut product, we attempted to generate embryos lacking the maternal contribution in order to explore the roles of Pnut in these processes. We used two methods, the production of germline clones homozygous for a pnut mutation and the rescue of pnut homozygous mutant flies by a pnut(+) transgene under control of the hsp70 promoter. Remarkably, the pnut germline-clone females produced eggs, indicating that stem-cell and cystoblast divisions in the female germline do not require Pnut. Moreover, the Pnut-deficient embryos obtained by either method completed early syncytial development and began cellularization of the embryo normally. However, during the later stages of cellularization, the organization of the actin cytoskeleton at the leading edge of the invaginating furrows became progressively more abnormal, and the embryos displayed widespread defects in cell and embryo morphology beginning at gastrulation. Examination of two other septins showed that Sep1 was not detectable at the cellularization front in the Pnut-deficient embryos, whereas Sep2 was still present in normal levels. Thus, it is possible that Sep2 (perhaps in conjunction with other septins such as Sep4 and Sep5) fulfills an essential septin role during the organization and initial ingression of the cellularization furrow even in the absence of Pnut and Sep1. Together, the results suggest that some cell-division events in Drosophila do not require septin function, that there is functional differentiation among the Drosophila septins, or both. 相似文献
9.
Higginson JR Thompson O Winder SJ 《The international journal of biochemistry & cell biology》2008,40(5):892-900
Dystroglycan is a cell adhesion molecule that interacts with ezrin family proteins and also components of the extracellular signal-regulated kinase pathway. Ezrin and extracellular signal-regulated kinase are both involved in aspects of the cell division cycle. We therefore examined the role of dystroglycan during cytokinesis. Endogenous dystroglycan colocalised with ezrin at the cleavage furrow and midbody during cytokinesis in REF52 cells. Live cell imaging of green fluorescent protein-tagged dystroglycan in Swiss 3T3 and Hela cells revealed a similar localisation. Live cell imaging of a dystroglycan lacking its cytoplasmic domain revealed an even membrane localisation but no cleavage furrow or midbody localisation. Deletion of a previously identified ezrin-binding site in the dystroglycan cytoplasmic domain however only resulted in a slight reduction in cleavage furrow localisation but loss of midbody staining. There was no apparent cytokinetic defect in cells depleted for dystroglycan, however apoptosis levels were considerably higher in dystroglycan knockdown cells. Cell cycle analysis showed a delay in G2/M transition, possibly caused by a more than 50% reduction in extracellular signal-regulated kinase levels in the knockdown cells. Dystroglycan may therefore not only have a role in organising the contractile ring through direct or indirect associations with actin, but can also modulate the cell cycle by affecting extracellular signal-regulated kinase levels. 相似文献
10.
11.
Cascone I Selimoglu R Ozdemir C Del Nery E Yeaman C White M Camonis J 《The EMBO journal》2008,27(18):2375-2387
The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression. 相似文献
12.
Serrão VH Alessandro F Caldas VE Marçal RL Pereira HD Thiemann OH Garratt RC 《FEBS letters》2011,585(24):3868-3873
We describe the purification, crystallization and structure for the GTP-binding domain of human septin 7 (SEPT7G). We show that it forms filaments within the crystal lattice which employ both the G and NC interfaces, similar to those seen in the hetero-filament of SEPT2/6/7. The NC interface is considered promiscuous as it is absent from the hetero-filament. Such promiscuity could provide the potential for permuting monomers along a filament in order to generate diversity in hetero-polymers. On the other hand, our results suggest that the G and NC interfaces may be necessary but insufficient for determining correct hetero-filament assembly.
Structured summary of protein interactions
SEPT7G and SEPT7Gbind by X-ray crystallography (View interaction).SEPT7 G and SEPT7 Gbind by molecular sieving (View interaction). 相似文献13.
Hirose K Kawashima T Iwamoto I Nosaka T Kitamura T 《The Journal of biological chemistry》2001,276(8):5821-5828
We have recently cloned a cDNA for a full-length form of MgcRacGAP. Here we show using anti-MgcRacGAP antibodies that, unlike other known GAPs for Rho family, MgcRacGAP localized to the nucleus in interphase, accumulated to the mitotic spindle in metaphase, and was condensed in the midbody during cytokinesis. Overexpression of an N-terminal deletion mutant resulted in the production of multinucleated cells in HeLa cells. This mutant lost the ability to localize in the mitotic spindle and midbody. MgcRacGAP was also found to bind alpha-, beta-, and gamma-tubulins through its N-terminal myosin-like domain. These results indicate that MgcRacGAP dynamically moves during cell cycle progression probably through binding to tubulins and plays critical roles in cytokinesis. Furthermore, using a GAP-inactive mutant, we have shown that the GAP activity of MgcRacGAP is required for cytokinesis, suggesting that inactivation of the Rho family of GTPases may be required for normal progression of cytokinesis. 相似文献
14.
Callum McKenzie Zuni I. Bassi Janusz Debski Marco Gottardo Giuliano Callaini Michal Dadlez Pier Paolo D'Avino 《Open biology》2016,6(3)
Cytokinesis culminates in the final separation, or abscission, of the two daughter cells at the end of cell division. Abscission relies on an organelle, the midbody, which forms at the intercellular bridge and is composed of various proteins arranged in a precise stereotypic pattern. The molecular mechanisms controlling midbody organization and function, however, are obscure. Here we show that proper midbody architecture requires cross-regulation between two cell division kinases, Citron kinase (CIT-K) and Aurora B, the kinase component of the chromosomal passenger complex (CPC). CIT-K interacts directly with three CPC components and is required for proper midbody architecture and the orderly arrangement of midbody proteins, including the CPC. In addition, we show that CIT-K promotes Aurora B activity through phosphorylation of the INCENP CPC subunit at the TSS motif. In turn, Aurora B controls CIT-K localization and association with its central spindle partners through phosphorylation of CIT-K''s coiled coil domain. Our results identify, for the first time, a cross-regulatory mechanism between two kinases during cytokinesis, which is crucial for establishing the stereotyped organization of midbody proteins. 相似文献
15.
Cytokinesis involves the formation of a cleavage furrow, followed by abscission, the cutting of the midbody channel, the final bridge between dividing cells. Recently, the midbody ring became known as central for abscission, but its regulation remains enigmatic. Here, we identify BRUCE, a 528 kDa multifunctional protein, which processes ubiquitin-conjugating activity, as a major regulator of abscission. During cytokinesis, BRUCE moves from the vesicular system to the midbody ring and serves as a platform for the membrane delivery machinery and mitotic regulators. Depletion of BRUCE in cell cultures causes defective abscission and cytokinesis-associated apoptosis, accompanied by a block of vesicular targeting and defective formation of the midbody and the midbody ring. Notably, ubiquitin relocalizes from midbody microtubules to the midbody ring during cytokinesis, and depletion of BRUCE disrupts this process. We propose that BRUCE coordinates multiple steps required for abscission and that ubiquitylation may be a crucial trigger. 相似文献
16.
Here we report the functional importance of profilin in various actin-mediated morphological changes using H119E mutant profilin I, which is deficient only in actin binding. In the case of actin-protrusive structures from the plasma membrane, H119E-profilin was shown to suppress the formation of Cdc42-induced actin microspikes and Rac-induced membrane ruffles. Conversely, Rho-induced stress fiber formation seemed to occur independently of H119E-profilin introduction. Furthermore, H119E-profilin blocked cleavage furrow ingression and subsequent adhesion to the substratum during cell division, a process in which actin plays indispensable roles. 相似文献
17.
钙调素(CaM)是细胞内Ca^2 的主要受体,在细胞增殖、分化、凋亡、迁移等过程中都发挥着重要的调控作用。采用GFP标记技术,我们观察了GFP—CaM在胞质分裂期HeLa细胞中的动态分布,发现在胞质分裂后期,GFP—CaM与中体紧密相连。抑制CaM的活性会阻止中体的解聚。进一步观察发现,CaM与γ-微管蛋白共分布在中体两侧,抑制CaM活性也会引起中体γ-微管蛋白解离的延迟。本实验结果说明分布在中体上的CaM很可能通过影响中体微管的稳定,参与调控胞质分裂的完成。 相似文献
18.
Ralph T Böttcher Sebastian Wiesner Attila Braun Reiner Wimmer Alejandro Berna Nadav Elad Ohad Medalia Alexander Pfeifer Attila Aszódi Mercedes Costell Reinhard Fässler 《The EMBO journal》2009,28(8):1157-1169
Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1‐mediated actin filament elongation. Neither an actin nor a poly‐proline binding‐deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis. 相似文献
19.
Liu D Zhang N Du J Cai X Zhu M Jin C Dou Z Feng C Yang Y Liu L Takeyasu K Xie W Yao X 《Biochemical and biophysical research communications》2006,345(1):394-402
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Our previous studies show that microtubule motor CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signaling cascade. However, the molecular function of CENP-E at the midbody had remained elusive. Here we show that CENP-E interacts with Skp1 at the midbody and participates in cytokinesis. CENP-E interacts with Skp1 in vitro and in vivo via its coiled-coil domain. Our yeast two-hybrid assays mapped the binding interfaces to the central stalk region of CENP-E (955-1571 aa) and the C-terminal 33 amino acids of Skp1, respectively. Our immunocytochemical studies revealed that CENP-E targets to the midbody prior to Skp1 and the midbody localization of CENP-E becomes diminished as Skp1 arrives at the midbody. Suppression of Skp1 in mitotic HeLa cells by siRNA resulted in accumulation of telophase cells with elongated inter-cell bridges and with midbodies stretched 2-3 times longer than that of normal cells. These Skp1-eliminated or -suppressed cells accumulate higher level of CENP-E, suggesting that spatiotemporal regulation of CENP-E degradation at the midbody is essential for cytokinesis. Over-expression of Skp1 lacking the CENP-E-binding domain confirmed that Skp1-CENP-E interaction is essential for faithful cytokinesis. We hypothesize that CENP-E degradation is essential for faithful mitotic exit and the proteolysis of CENP-E is mediated by SCF via a direct Skp1 link. 相似文献
20.
Rama K. Mallampalli Jennifer R. Glasser Tiffany A. Coon Bill B. Chen 《Cell cycle (Georgetown, Tex.)》2013,12(4):663-673
Aurora B kinase is an integral regulator of cytokinesis as it stabilizes the intercellular canal within the midbody to ensure proper chromosomal segregation during cell division. Here we identified an E3 ligase subunit, F box protein FBXL2, that by recognizing a calmodulin binding signature within Aurora B, ubiquitinates and removes the kinase from the midbody. Calmodulin, by competing with the F box protein for access to the calmodulin binding signature, protected Aurora B from FBXL2. Calmodulin co-localized with Aurora B on the midbody, preserved Aurora B levels in cells, and stabilized intercellular canals during delayed abscission. Genetic or pharmaceutical depletion of endogenous calmodulin significantly reduced Aurora B protein levels at the midbody resulting in tetraploidy and multi-spindle formation. The calmodulin inhibitor, calmidazolium, reduced Aurora B protein levels resulting in tetraploidy, mitotic arrest, and apoptosis of tumorigenic cells and profoundly inhibiting tumor formation in athymic nude mice. These observations indicate molecular interplay between Aurora B and calmodulin in telophase and suggest that calmodulin acts as a checkpoint sensor for chromosomal segregation errors during mitosis. 相似文献