首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily proteins that participate in the organization of epithelial and endothelial junctions. Nectins have three Ig-like domains in the extracellular region, and the first one is essential in cell-cell adhesion and plays a central role in the interaction with the envelope glycoprotein D of several viruses. Five Nectin-like molecules (Necl-1 through -5) with similar domain structures to those of Nectins have been identified. Necl-1 is specifically expressed in neural tissue, has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity, and plays an important role in the formation of synapses, axon bundles, and myelinated axons. Here we report the first crystal structure of its N-terminal Ig-like V domain at 2.4 A, providing insight into trans-cellular recognition mediated by Necl-1. The protein crystallized as a dimer, and the dimeric form was confirmed by size-exclusion chromatography and chemical cross-linking experiments, indicating this V domain is sufficient for homophilic interaction. Mutagenesis work demonstrated that Phe(82) is a key residue for the adhesion activity of Necl-1. A model for homophilic adhesion of Necl-1 at synapses is proposed based on its structure and previous studies.  相似文献   

2.
AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell-cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell-cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion.  相似文献   

3.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that play roles in organization of a variety of cell-cell junctions in cooperation with or independently of cadherins. Four nectins have been identified. Five nectin-like molecules, which have domain structures similar to those of nectins, have been identified, and we characterized here nectin-like molecule-2 (Necl-2)/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1. Necl-2 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-1/TSLL1/SynCAM3 and nectin-3. Necl-2 was widely expressed in rat tissues examined. Necl-2 localized at the basolateral plasma membrane in epithelial cells of the mouse gall bladder, but not at specialized cell-cell junctions, such as tight junctions, adherens junctions, and desmosomes. Nectins bind afadin, whereas Necl-2 did not bind afadin but bound Pals2, a membrane-associated guanylate kinase family member known to bind Lin-7, implicated in the proper localization of the Let-23 protein in Caenorhabditis elegans, the homologue of mammalian epidermal growth factor receptor. These results indicate the unique localization of Necl-2 and its possible involvement in localization of a transmembrane protein(s) through Pals2.  相似文献   

4.
A body of evidence is emerging that shows a requirement for ephrin ligands in the proper migration of cells, and the formation of cell and tissue boundaries. These processes are dependent on the cell-cell adhesion system, which plays a crucial role in normal morphogenetic processes during development, as well as in invasion and metastasis. Although ephrinB ligands are bi-directional signalling molecules, the precise mechanism by which ephrinB1 signals through its intracellular domain to regulate cell-cell adhesion in epithelial cells remains unclear. Here, we present evidence that ephrinB1 associates with the Par polarity complex protein Par-6 (a scaffold protein required for establishing tight junctions) and can compete with the small GTPase Cdc42 for association with Par-6. This competition causes inactivation of the Par complex, resulting in the loss of tight junctions. Moreover, the interaction between ephrinB1 and Par-6 is disrupted by tyrosine phosphorylation of the intracellular domain of ephrinB1. Thus, we have identified a mechanism by which ephrinB1 signalling regulates cell-cell junctions in epithelial cells, and this may influence how we devise therapeutic interventions regarding these molecules in metastatic disease.  相似文献   

5.
Tissue distribution and cell type-specific expression of p120ctn isoforms.   总被引:3,自引:0,他引:3  
Cadherin-based molecular complexes play a major role in cell-cell adhesion. At the adherens junctions the intracellular domain of cadherins specifically interacts with beta-catenin and p120ctn, members of the Armadillo repeat protein family. Differential splicing and utilization of the alternative translation initiation codons lead to many p120ctn isoforms. Two major p120ctn isoforms are expressed in mouse tissues. In this study we used indirect immunofluorescence to demonstrate significant tissue specificity in expression of the p120ctn isoforms. The short isoform is abundant at cell-cell adhesion junctions in epidermis, palatal, and tongue epithelia, in the ducts of excretory glands, bronchiolar epithelium, and in mucosal epithelia of esophagus, forestomach, and small intestine. In contrast, the long isoform, containing an amino terminus highly conserved within the p120ctn subfamily, is expressed at vascular-endothelial cell junctions in blood vessels, at cell-cell junctions in the serosal epithelium lining the internal organs, in choroid plexus of brain, in the pigment epithelium of retina, and in structures such as the outer limiting membrane of retina and intercalated discs of cardiomyocytes. The tissue- and cell type-specific expression of p120ctn isoforms suggests a role for the long p120ctn isoform in cell structures responsible for stable tissue integrity, compared to the role of the short isoform in cell-cell adhesion in the external epithelia with rapid turnover.  相似文献   

6.
Cadherins mediate cell-cell adhesion by linking cell junctions to actin networks. Although several actin regulatory systems have been implicated in cell-cell adhesion, it remains unclear how such systems drive cadherin-actin network formation and how they are regulated to coincide with initiation of adhesion. Previous work implicated VASP in assembly of cell-cell junctions in keratinocytes and the VASP-binding protein zyxin colocalizes with VASP at cell-cell junctions. Here we examine how domains in zyxin and its relative LPP contribute to cell-cell junction assembly. Using a quantitative assay for cell-cell adhesion, we demonstrate that zyxin and LPP function to increase the rate of early cell-cell junction assembly through the VASP-binding ActA repeat region. We also identify the LIM region of zyxin and LPP to be a regulatory domain that blocks function of these proteins. Deletion of the LIM domains drives adhesion and increases VASP level in detergent insoluble cadherin-actin. Dominant-negative zyxin/LPP mutants reduce the rate of adhesion, lower VASP levels in detergent-insoluble cadherin-actin networks, and allow for the accumulation of capping protein at cell-cell contacts. These data implicate the LIM domains of zyxin and LPP in regulating cell-cell junction assembly through VASP.  相似文献   

7.
Cell polarity is a key element of development in most eukaryotes. The Rho GTPase-activating protein Rgd1p positively regulates the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p contains an F-BAR domain at its N-terminal end in addition to its RhoGAP domain at its C-terminal end. We demonstrate here that phospholipids discriminate between the GTPase activities of Rho3p and Rho4p through Rgd1p and specifically stimulate the RhoGAP activity on Rho4p. The central region of the protein contiguous to the F-BAR domain is required for this stimulation. The F-BAR region binds to phosphoinositides in vitro and also plays a key role in the localization of Rgd1p to the bud tip and neck during the cell cycle. Studies of heat-sensitive mutants lacking phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate suggested that Rgd1p initially binds to Golgi membranes via phosphatidylinositol 4-phosphate and is then transported to the plasma membrane, where it binds phosphatidylinositol 4,5-biphosphate. We demonstrate here the dual effects of phosphoinositides on a RhoGTPase-activating protein. Phosphoinositides both regulate the recruitment and trafficking of Rgd1p to membranes via the F-BAR domain and specifically stimulate GTPase-activating protein activity, consistent with functional interplay between lipids, RhoGAP, and its related GTPases in yeast growth.  相似文献   

8.
We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").  相似文献   

9.
E-cadherin mediates the formation of adherens junctions between epithelial cells. It serves as a receptor for Listeria monocytogenes, a bacterial pathogen that enters epithelial cells. The L. monocytogenes surface protein, InlA, interacts with the extracellular domain of E-cadherin. In adherens junctions, this ectodomain is involved in homophilic interactions whereas the cytoplasmic domain binds beta-catenin, which then recruits alpha-catenin. alpha-catenin binds to actin directly, or indirectly, thus linking E-cadherin to the actin cytoskeleton. Entry of L. monocytogenes into cells and adherens junction formation are dynamic events that involve actin and membrane rearrangements. To understand these processes better, we searched for new ligands of alpha-catenin. Using a two-hybrid screen, we identified a new partner of alpha-catenin: ARHGAP10. This protein colocalized with alpha-catenin at cell-cell junctions and was recruited at L. monocytogenes entry sites. In ARHGAP10-knockdown cells, L. monocytogenes entry and alpha-catenin recruitment at cell-cell contacts were impaired. The GAP domain of ARHGAP10 has GAP activity for RhoA and Cdc42. Its overexpression disrupted actin cables, enhanced alpha-catenin and cortical actin levels at cell-cell junctions and inhibited L. monocytogenes entry. Altogether, our results show that ARHGAP10 is a new component of cell-cell junctions that controls alpha-catenin recruitment and has a key role during L. monocytogenes uptake.  相似文献   

10.
Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhdflox/flox mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma.  相似文献   

11.
Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1''s activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties.  相似文献   

12.
The CTX family is a growing group of type I transmembrane proteins within the immunoglobulin superfamily (IgSF). They localize to junctional complexes between endothelial and epithelial cells and seem to participate in cell-cell adhesion and transmigration of leukocytes. Here, we report the identification of a new member of the CTX family. This protein, which was designated CLMP (coxsackie- and adenovirus receptor-like membrane protein), is composed of 373 amino acids including an extracellular part containing a V- and a C2-type domain, a transmembrane region and a cytoplasmic tail. CLMP mRNA was detected in a variety of both human and mouse tissues and cell lines. The protein migrated with an Mr of around 48 on SDS-PAGE and was predominantly expressed in epithelial cells within different tissues. In cultured epithelial cells, CLMP was detected in areas of cell-cell contacts. When exogenously expressed in polarized MDCK cells, CLMP was restricted to the subapical area of the lateral cell surface, where it co-localized with the tight junction markers ZO-1 and occludin. Also endogenous CLMP showed association with tight junctions, as analyzed in polarized human CACO-2 cells. This suggested a role for CLMP in cell-cell adhesion and indeed, overexpressed CLMP induced aggregation of non-polarized CHO cells. Furthermore, CLMP-expressing MDCK cells showed significantly increased transepithelial resistance, indicating a role for CLMP in junctional barrier function. Thus, we conclude that CLMP is a novel cell-cell adhesion molecule and a new component of epithelial tight junctions. We also suggest, based on phylogenetic studies, that CLMP, CAR, ESAM, and BT-IgSF form a new group of proteins within the CTX family.  相似文献   

13.
The role of platelet endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cell-cell interactions and its contribution to cadherin-mediated cell adhesion are poorly understood. Such studies have been difficult because all known endothelial cells express PECAM-1. We have used Madin-Darby canine kidney (MDCK) cells as a model system in which to evaluate the role of PECAM-1 isoforms that differ in their cytoplasmic domains in cell-cell interactions. MDCK cells lack endogenous PECAM-1 but form cell-cell junctions similar to those of endothelial cells, in which PECAM-1 is concentrated. MDCK cells were transfected with two isoforms of murine PECAM-1, Delta15 and Delta14&15, the predominant isoforms expressed in vivo. Expression of the Delta15 isoform resulted in apparent dedifferentiation of MDCK cells concomitant with the loss of adherens junctions, down-regulation of E-cadherin, alpha- and beta-catenin expression, and sustained activation of extracellular regulated kinases. The Delta15 isoform was not concentrated at cell-cell contacts. In contrast, the Delta14&15 isoform localized to sites of cell-cell contact and had no effect on MDCK cell morphology, cadherin/catenin expression, or extracellular regulated kinase activity. Thus, the presence of exon 14 in the cytoplasmic domain of PECAM-1 has dramatic effects on the ability of cells to maintain adherens junctions and an epithelial phenotype. Therefore, changes in the expression of exon 14 containing PECAM-1 isoforms, which we have observed during development, may have profound functional consequences.  相似文献   

14.
15.
To gain fundamental information regarding the molecular basis of endothelial cell adhesive interactions during vascular formation, we have cloned and characterized a unique cell adhesion molecule. This molecule, named endothelial cell-selective adhesion molecule (ESAM), is a new member of the immunoglobulin superfamily. The conceptual protein encoded by cDNA clones consists of V-type and C2-type immunoglobulin domains as well as a hydrophobic signal sequence, a single transmembrane region, and a cytoplasmic domain. Northern blot analysis showed ESAM to be selectively expressed in cultured human and murine vascular endothelial cells and revealed high level expression in lung and heart and low level expression in kidney and skin. In situ hybridization analysis indicated that ESAM is primarily expressed in the developing vasculature of the embryo in an endothelial cell-restricted pattern. Epitope-tagged ESAM was shown to co-localize with cadherins and catenins in cell-cell junctions. In aggregation assays employing ESAM-expressing Chinese hamster ovary cells, this novel molecule was shown to mediate cell-cell adhesion through homophilic interactions. The endothelial cell-selective expression of this immunoglobulin-like adhesion molecule coupled with its in vitro functional profile strongly suggests a role in cell-cell interactions that is critical for vascular development or function.  相似文献   

16.
Cell-cell adhesion is a critical process for the formation and maintenance of tissue patterns during development, as well as invasion and metastasis of cancer cells. Although great strides have been made regarding our understanding of the processes that play a role in cell-cell adhesion, the precise mechanisms by which diverse signaling events regulate cell and tissue architecture is poorly understood. In this commentary we will focus on the Eph/ephrin signaling system, and specifically how the ephrinB1 transmembrane ligand for Eph receptor tyrosine kinases sends signals affecting cell-cell junctions. In a recent study using the epithelial cells of early stage Xenopus embryos, we have shown that loss- or gain-of function of ephrinB1 can disrupt cell-cell contacts and tight junctions. This study reveals a mechanism where ephrinB1 competes with active Cdc42 for binding to Par-6, a scaffold protein central to the Par polarity complex (Par-3/Par-6/Cdc42/aPKC) and disrupts the localization of tight junction-associated proteins (ZO-1, Cingulin) at tight junctions. This competition reduces aPKC activity critical to maintaining and/or forming tight junctions. Finally, phosphorylation of ephrinB1 on specific tyrosine residues can block the interaction between ephrinB1 and Par-6 at tight junctions, and restore tight junction formation. Recent evidence indicates that de-regulation of forward signaling through EphB receptors may play a role in metastatic progression in colon cancer. In light of the new data showing an effect of ephrinB reverse signaling on tight junctions, an additional mechanism can be hypothesized where de-regulation of ephrinB1 expression or phosphorylation may also impact metastatic progression.  相似文献   

17.
To achieve strong adhesion to their neighbors and sustain stress and tension, epithelial cells develop many different specialized adhesive structures. Breakdown of these structures occurs during tumor progression, with the development of a fibroblastic morphology characteristic of metastatic cells. During Ras transformation, Rac-signaling pathways participate in the disruption of cadherin-dependent adhesion. We show that sustained Rac activation per se is sufficient to disassemble cadherin-mediated contacts in keratinocytes, in a concentration- and time-dependent manner. Cadherin receptors are removed from junctions before integrin receptors, suggesting that pathways activated by Rac can specifically interfere with cadherin function. We mapped an important region for disruption of junctions to the putative second effector domain of the Rac protein. Interestingly, although this region overlaps the domain necessary to induce lamellipodia, we demonstrate that the disassembly of cadherin complexes is a new Rac activity, distinct from Rac-dependent lamellipodia formation. Because Rac activity is also necessary for migration, Rac is a good candidate to coordinately regulate cell-cell and cell-substratum adhesion during tumorigenesis.  相似文献   

18.
Cerebral cavernous malformation (CCM), a disease associated with defective endothelial junctions, result from autosomal dominant CCM1 mutations that cause loss of KRIT-1 protein function, though how the loss of KRIT-1 leads to CCM is obscure. KRIT-1 binds to Rap1, a guanosine triphosphatase that maintains the integrity of endothelial junctions. Here, we report that KRIT-1 protein is expressed in cultured arterial and venous endothelial cells and is present in cell-cell junctions. KRIT-1 colocalized and was physically associated with junctional proteins via its band 4.1/ezrin/radixin/moesin (FERM) domain. Rap1 activity regulated the junctional localization of KRIT-1 and its physical association with junction proteins. However, the association of the isolated KRIT-1 FERM domain was independent of Rap1. Small interfering RNA-mediated depletion of KRIT-1 blocked the ability of Rap1 to stabilize endothelial junctions associated with increased actin stress fibers. Thus, Rap1 increases KRIT-1 targeting to endothelial cell-cell junctions where it suppresses stress fibers and stabilizes junctional integrity.  相似文献   

19.
Maintenance of stable E-cadherin-dependent adhesion is essential for epithelial function. The small GTPase Rac is activated by initial cadherin clustering, but the precise mechanisms underlying Rac-dependent junction stabilization are not well understood. Ajuba, a LIM domain protein, colocalizes with cadherins, yet Ajuba function at junctions is unknown. We show that, in Ajuba-depleted cells, Rac activation and actin accumulation at cadherin receptors was impaired, and junctions did not sustain mechanical stress. The Rac effector PAK1 was also transiently activated upon cell-cell adhesion and directly phosphorylated Ajuba (Thr172). Interestingly, similar to Ajuba depletion, blocking PAK1 activation perturbed junction maintenance and actin recruitment. Expression of phosphomimetic Ajuba rescued the effects of PAK1 inhibition. Ajuba bound directly to Rac·GDP or Rac·GTP, but phosphorylated Ajuba interacted preferentially with active Rac. Rather than facilitating Rac recruitment to junctions, Ajuba modulated Rac dynamics at contacts depending on its phosphorylation status. Thus, a Rac-PAK1-Ajuba feedback loop integrates spatiotemporal signaling with actin remodeling at cell-cell contacts and stabilizes preassembled cadherin complexes.  相似文献   

20.
Based on recent data showing that overexpression of the Na,K-ATPase beta(1) subunit increased cell-cell adhesion of nonpolarized cells, we hypothesized that the beta(1) subunit can also be involved in the formation of cell-cell contacts in highly polarized epithelial cells. In support of this hypothesis, in Madin-Darby canine kidney (MDCK) cells, the Na,K-ATPase alpha(1) and beta(1) subunits were detected as precisely co-localized with adherens junctions in all stages of the monolayer formation starting from the initiation of cell-cell contact. The Na,K-ATPase and adherens junction protein, beta-catenin, stayed partially co-localized even after their internalization upon disruption of intercellular contacts by Ca(2+) depletion of the medium. The Na,K-ATPase subunits remained co-localized with the adherens junctions after detergent treatment of the cells. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase beta(1) subunit and the endogenous alpha(1) subunit was easily dissociated from the adherens junctions and cytoskeleton by the detergent extraction. The MDCK cell line in which half of the endogenous beta(1) subunits in the lateral membrane were substituted by unglycosylated beta(1) subunits displayed a decreased ability to form cell-to-cell contacts. Incubation of surface-attached MDCK cells with an antibody against the extracellular domain of the Na,K-ATPase beta(1) subunit specifically inhibited cell-cell contact formation. We conclude that the Na,K-ATPase beta(1) subunit is involved in the process of intercellular adhesion and is necessary for association of the heterodimeric Na,K-ATPase with the adherens junctions. Further, normal glycosylation of the Na,K-ATPase beta(1) subunit is essential for the stable association of the pump with the adherens junctions and plays an important role in cell-cell contact formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号