首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polysomal and microsomal profiles from fat body tissues of Leucophaea analysed by a combination of equilibrium sedimentation and sedimentation velocity centrifugations on sucrose density gradients revealed that microsomes from egg-maturing females are considerably more dense than those from allatectomized (reproductively inactive) females or from males. This greater density is conferred on the microsomes of reproductively active females by the binding of many more ribosomes (polysomes) to the membranes. Treatment of the microsomes with 500 mM K+ or 1 mM puromycin resulted in a removal of only a few ribosomes and polysomes from the membranes, as is documented with the electron microscope. Incubation of microsomes with a combination of 500 mM K+ and 1 mM puromycin resulted in a complete degranulation of the membranes. Such microsomes attained a density similar to those of the inactive tissues. From the available evidence it is concluded that the female specific protein (vitellogenin), which is induced by the juvenile hormone, is synthesized on ergastoplasmic membranes and released into the cisternae as is known for the synthesis of exportable proteins in several vertebrate systems.  相似文献   

2.
Cytyledons of the common bean, Phaseolus vulgaris L., were incubated with radioactive amino acids at different stages of seed development. The proteins were fractionated by ion-exchange chromatography, sucrose gradients, and sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis. From 16 to 28 d after flowering about 40% of the incorporated radioactivity was associated with the polypeptides of vicilin and 10% with those of phytohemagglutinin.Polysomes were isolated from developing cotyledons 20–25 d after flowering and free polysomes were separated from membrane-bound polysomes. Aurintricarboxylic acid, an inhibitor of initiation in cell-free translation systems, did not inhibit the incorporation of amino acids into in-vitro synthesized proteins, indicating that synthesis was limited to the completion of already initiated polypeptides. Autofluorography of SDS-polyacrylamide gels showed that the two classes of polysomes made two different sets of polypeptides and that there was little overlap between these two sets.Four polypeptides similar in size to the 4 polypeptides of vicilin were made by membrane-bound polysomes and not by free polysomes. Antibodies specific for vicilin bound to those 4 polypeptides. Free polysomes made only polypeptides which did not bind to antibodies specific for vicilin. Antibodies against phytohemagglutinin did not bind to any of the invitro synthesized polypeptides.The membranes to which the polysomes were bound were characterized on sucrose gradients and by electron microscopy. Polysomes recovered from membranes which banded on top of 35 and 50% sucrose synthesized the vicilin polypeptides most rapidly. These membrane fractions were rich in vesicles of rough endoplasmic reticulum (ER). The ER marker-enzyme NADH-cytochrome-c reductase banded with an average density of 1.18 g/cm3 (40% w/w sucrose) on continuous gradients. These experiments demonstrate that the ER is the site of vicilin synthesis in developing bean cotyledons. Quantitative determinations of several ER parameters (RNA and lipid-phosphate content, NADH-cytochrome-c-reductase activity) show that expansion of the cotyledons is accompanied by a 4-6-fold increase in ER.  相似文献   

3.
The basal cells in the ligule of Isoetes lacustris contain numerousprotein bodies, the contents of which can be digested enzymicallyby pronase and are stained red by treatment with ninhydrin Schiff'sreagent. Two types of protein bodies can be distinguished ultrastructurally:spherically-shaped bodies with granular contents and spindle-likebodies with fibrillar contents. Both are ensheathed by singlemembranes and do not show any solid inclusions within theirmatrix. The protein bodies probably arise from dilatation of the endoplasmicreticulum (ER) cisternae. This conclusion is based upon threeobservations: (a) The protein bodies occasionally show membranecontinuity with the ER; (b) ribosomes and polysomes are frequentlyattached to the protein-body membranes; (c) the contents ofthe protein bodies and of the dilated ER cisternae show similarultrastructural features. The dilatation of the ER cisternae is assumed to be a resultof protein accumulation in the intracisternal space. Based upon the results of polyacrylamide gel electrophoresis,it is likely that the spherically-shaped protein bodies storepredominately two proteins with molecular weights of 51300 and55800 D, while the spindle-like bodies store two proteins withmolecular weights of 92000 and 98000 D. The results presented do not permit a definite conclusion regardingthe function of the ligule of Isoetes lacustris but it is suggestedthat it may have a nutritive role. Isoetes lacustris L., ligule, protein bodies, endoplasmic reticulum, ultrastructure  相似文献   

4.
B. Stanković  S. Abe  E. Davies 《Protoplasma》1993,177(1-2):66-72
Summary Frozen corn endosperm was homogenized in a cytoskeleton-stabilizing buffer and stained directly (without pelleting) with rhodamine-phalloidin for actin and either thiazole orange to stain RNA or DiOC6 to stain membranes prior to examination under the fluorescence microscope. Other samples were treated with a non-ionic detergent alone or in conjunction with a ionic detergent prior to staining and fluorescence microscopy. Very gentle homogenization in unsupplemented buffer yielded a massive aggregate containing protein bodies that fluoresced after treatment with the ER stain DiOC6. This aggregate was capped by an aggregate of unstained starch grains. More vigorous homogenization yielded more disperse patterns showing almost identical co-localization of ER, actin and RNA (polysomes). Homogenization in buffer plus non-ionic detergent removed most of the membrane yet maintained co-localization of actin and polysomes, while homogenization in double detergent removed the last traces of membrane and actin, and released over 70% of the polysomes. We interpret these results to suggest that protein bodies are surrounded by membranes, cytoskeleton and RNA (polysomes) and that the majority of the polysomes are attached more firmly to the cytoskeleton than to the membrane. This provides evidence from fluorescence microscopy to supplement that from biochemical analyses for the existence of cytomatrix-bound polysomes in plants.Abbreviations CBP cytoskeleton-bound polysomes - CMBP cyto-matrix-bound polysomes - CSB cytoskeleton-stabilizing buffer - DOC sodium deoxycholate - DiOC6 3,3-dihexyloxacarbocyanine iodide - DTE dithioerythritol - MBP membrane-bound polysomes - FP free polysomes - PMSF phenylmethyl-sulfonyl fluoride - PTE polyoxy-ethylene-10-tridecyl ether - Rh-Ph rhodamine-phalloidin - TO thiazole orange - Tris tris-(hydroxymethyl) aminomethane  相似文献   

5.
The incorporation of [3H]-glucosamine into polypeptides of three fractions of polysomes in MPC-11 cells was studied. After short term incubation greatest incorporation was observed in a fraction of membrane-bound polysomes, which after nitrogen cavitation of cells, remained bound to the endoplasmic reticulum (ER) associated with the nucleus (fraction 2). Polypeptide chains on membrane-bound polysomes in the microsomal fraction (fraction 1) and free polysomes contained much less radioactivity. Since nascent polypeptide chains contained within membrane-bound polysomes of fraction 2 are glycosylated at an earlier stage than those in fraction 1 it is likely that this represents a difference in type of proteins synthesized in the respective fractions of ER.  相似文献   

6.
It has become evident during recent years that a wide variety of proteins are synthesized on membrane-bound polysomes, very many of which are not ultimately secreted from the cell. The majority of proteins appear to go through some form of post-translational modification before the final appearance of an 'active' product, and in some cases the polypeptide chain may be modified before the completed protein molecule is released from the ribosome. This then raises the question concerning the possibility of the organization of the rough endoplasmic reticulum into individual domains, or compartments, each of which may have the responsibility of performing definite and well defined functions. During recent years the behaviour of two subfractions of the rough endoplasmic reticulum in a variety of cell types and under a variety of conditions has been studied in order to gain insight into a possible compartmentation of this organelle. Throughout the studies disruption of cells has been performed by nitrogen cavitation. This technique was chosen in order to provide conditions of homogenization which were extremely reproducible since shearing forces, mechanical damage and the effects of local heating were eliminated. Endoplasmic reticulum (ER) membranes isolated from the post-mitochondrial supernatant have been separated into subfractions by centrifugation on discontinuous sucrose gradients. By virtue of their high density imparted by the association of ribosomes, rough ER (RER) membranes penetrate 1.4 M sucrose accumulating above either 2.0 M sucrose (light rough -LR membranes) or a cushion of 2.3 M sucrose (heavy rough -HR membranes). Smooth (S) membranes, which are virtually devoid of ribosomes, collect above 1.4 M sucrose. The HR, LR and S subfractions in MPC-11 cells differ in a number of respects: RNA/protein and RNA/phospholipid ratios, polysome profiles and marker enzymes. When cells were homogenized in buffer containing 25 mM KCl then all three ER subfractions were observed, however, when the buffer contained 100 mM KCl then only the LR and S subfractions were observed in gradients, radioactivity equivalent to that in the HR fraction was not recovered in the other two subfractions. Four times as many light chain immunoglobulin polypeptides were found associated with polysomes of HR membranes compared to LR membranes. The nuclear associated ER (NER), though very active in protein synthesis, was only 20% as active in the synthesis of light chain as the combined LR/HR fraction. Studies with MPC-11 cells showed that the relative amounts of the three ER subfractions were related to the phase of the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.Protein translocation across the rough endoplasmic reticulum (RER) is an ancient and evolutionarily conserved process that is analogous to protein export across the cytoplasmic membranes of eubacterial and archaebacterial cells both with respect to the mechanism and core components. The RER membrane of eukaryotic cells is contiguous with the nuclear envelope and is morphologically composed of interconnected cisternae and tubules. Electron microscope images of mammalian cells and tissues revealed that the cisternal regions of the cytoplasmic surface of the endoplasmic reticulum are densely studded by membrane-bound ribosomes (Palade 1955a,b), giving rise to the term “rough ER.” The RER-bound ribosomes in en face images are often arranged in spirals or hairpins (Palade 1955a; Christensen and Bourne 1999), indicative of polyribosomes that are actively engaged in protein translation.Consistent with this high density of membrane-bound ribosomes, the RER is a major site of protein biosynthesis in eukaryotic cells. The nuclear envelope, the Golgi, lysosome, peroxisome, plasma membrane, and endosomes are biosynthetically derived from the rough ER. The three major groups of proteins that are synthesized by RER-bound ribosomes include secretory proteins, integral membrane proteins destined for ER-derived membranes, and the lumenal-resident proteins of the ER, Golgi, nuclear envelope, and lysosome. For those membranes that are not physically linked to the ER (e.g., the lysosome), integral membrane and lumenal proteins are delivered to their destination by vesicular transport pathways. Bioinformatics analysis of fully sequenced eukaryotic genomes indicates that roughly 30% of open reading frames encode integral membrane proteins (Wallin and von Heijne 1998); hence, a major role of the RER is the biosynthesis of membrane proteins. An important class of membrane proteins that are integrated into the RER has single carboxy-terminal TM spans and are known as tail-anchored (TA) membrane proteins. The posttranslational integration pathway for TA proteins has been a subject of several recent reviews (Borgese and Fasana 2011; Shao and Hegde 2011), thus we will not address the TA pathway in this article.  相似文献   

8.
A fraction enriched in microsomal membranes was prepared fromdeveloping pea cotyledons by differential centrifugation andfound to contain 5-10% of the total extractable -mannosidase,-and ß-galactosidase, hexosaminidase, ß-glucosidaseand p-nitrophenylphosphatase (PNPase). Further purificationof this microsomal fraction on linear sucrose density gradientswith or without EDTA confirmed the association of the majorityof the glycosidase activity with ER membranes whereas PNPasewas associated with a different unidentified membrane componentfound at a density of 1:19 g cm–3. The microsomal-associatedglycosidases were divided into luminal and membrane-bound fractions,the ratio being different for each individual glycosidase. PNPasewas entirely membranebound. Neither the membrane-bound glycosidasesnor PNPase could be released from the membranes by ionic treatment,changes in pH or competition with monosaccharide solutions.Chromatofocusing of the glycosidases from the microsomal fractionshowed that specific isozymes of -mannosidase and ß-galactosidasewere associated with the membranes and lumen respectively butthere was no consistent relations between these and the isozymespresent in the protein bodies. The significance of these observationswith regard to the intracellular targeting of newly synthesizedenzymes from their site of synthesis to specific organellesis discussed. Key words: Endoplasmic reticulum, Glycoproteins, Glycosidases, Lectin, Phosphatase, Protein transport  相似文献   

9.
A membrane-bound fraction of polysomes of Escherichia coli has been isolated after lysis of cells without the use of lysozyme. Protein-synthesis studies in vitro show that membrane-bound and free polysomes are different in the following respects. 1. Membrane-bound polysomes synthesize proteins which are exported from the cell. The products include proteins of the outer membrane and a secreted periplasmic protein, the maltose-binding protein. 2. The major product synthesized by free polysomes is elongation factor Tu, a soluble cytoplasmic protein. 3. The activity of membrane-bound polysomes in vitro is more resistant to puromycin than is the activity of free polysomes. In addition, the mRNA associated with membrane-bound polysomes is more stable than the bulk of cellular mRNA as revealed by studies with rifampicin.  相似文献   

10.
Previous studies have demonstrated that the mRNAs encoding the prolamine and glutelin storage proteins are localized to morphologically distinct membranes of the endoplasmic reticulum (ER) complex in developing rice (Oryza sativa L.) endosperm cells. To gain insight about this mRNA localization process, we investigated the association of prolamine polysomes on the ER that delimit the prolamine protein bodies (PBs). The bulk of the prolamine polysomes were resistant to extraction by 1% Triton X-100 either alone or together with puromycin, which suggests that these translation complexes are anchored to the PB surface through a second binding site in addition to the well-characterized ribosome-binding site of the ER-localized protein translocation complex. Suppression of translation initiation shows that these polysomes are bound through the mRNA, as shown by the simultaneous increase in the amounts of ribosome-free prolamine mRNAs and decrease in prolamine polysome content associated with the membrane-stripped PB fraction. The prolamine polysome-binding activity is likely to be associated with the cytoskeleton, based on the association of actin and tubulin with the prolamine polysomes and PBs after sucrose-density centrifugation.  相似文献   

11.
This review describes the critical evidence that in eukaryotic cells polyribosomes, mRNAs and components of the protein synthetic machinery are associated with the cytoskeleton. The role of microtubules, intermediate filaments and microfilaments are discussed; at present most evidence suggests that polyribosomes interact with the actin filaments. The use of non-ionic detergent/deoxycholate treatment in the isolation of cytoskeletal-bound polysomes is described and the conclusion reached that at low salt concentrations this leads to mixed preparations of polysomes derived from both the cytoskeleton and the endoplasmic reticulum. At present the best approach for isolation of cytoskeletal-bound polysomes appears to involve extraction with salt concentrations greater than 130 mM after an initial non-ionic detergent treatment. Such polysomes appear to be enriched in certain mRNAs and thus it is suggested that they are involved in translation of a unique set of proteins. The evidence for mRNA localisation is presented and the role of the cytoskeleton in transport and localisation of RNA discussed. Recent data on the role of the 3 untranslated region in the targeting of mRNAs both to particular regions of the cell and for translation on cytoskeletal-bound polysomes is described. The hypothesis is developed that the association of polysomes with the cytoskeleton is the basis of a mechanism for the targeting of mRNAs and the compartmentalization of protein synthesis.Abbreviations CBP cytoskeletal-bound polysomes - FP free polysomes - MBP membrane-bound polysomes - ER endoplasmic reticulum  相似文献   

12.
The subcellular localization and secretion of proteins synthesized in the cytosol are determined by short amino acid sequences in their molecules. N-terminal transit peptides provide for protein translocation across the membranes of the ER, mitochondria, plastids, and microbodies. Later, these peptides are cleaved off by processing peptidases. C-terminal peptides direct some proteins into microbodies and vacuoles. Transport into the nucleus and insertion in the membranes are determined by the specific sequences that reside in the molecule of the mature protein. Specific receptors associated with the protein-translocating channel recognize transit peptides. Protein unfolding is required for successful protein transport through these channels. Chaperones maintain proteins in such a state. Folded proteins cross the nuclear pore complex and the membrane of microbodies. Protein transport is tightly associated with their processing. During the vesicular protein transport within the endomembrane system (ER, Golgi apparatus, plasma membrane, and vacuoles), correct protein targeting is ensured by protein sorting during vesicle loading, the assembly of corresponding protein coats, vesicle transport to the acceptor membrane, and specific membrane fusion.  相似文献   

13.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   

14.
  • 1.1. Rat liver microsomal membranes were studied for the presence of protein kinases. Microsomal proteins solubilized with Triton X-100 were analyzed by means of ion exchange chromatography.
  • 2.2. Protein kinase activity was detected in the column fractions using specific assays for cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C, Ca2+/calmodulin-dependent protein kinase and casein kinases.
  • 3.3. Fractions with protein kinase activity were further analyzed by SDS-polyacrylamide gel electrophoresis.
  • 4.4. The results indicate that cAMP-dependent protein kinase type I and II, casein kinases I and II, protein kinase C proenzymes I and II and Ca2+ /calmodulin kinase II are associated with the membranes of endoplasmic reticulum (ER).
  相似文献   

15.
Disuse atrophy of skeletalmuscle leads to an upregulation of genes encoding sarcoplasmicreticulum (SR) calcium-handling proteins. Because many of theproteins that are induced with endoplasmic reticulum (ER) stress are ERcalcium-handling proteins, we sought to determine whether soleus muscleatrophy was associated with a prototypical ER stress response. Sevendays of rat hindlimb unloading did not alter expression of ubiquitousER stress proteins such as Grp78, calreticulin, and CHOP/GADD-153, norother proteins that have been shown to be activated by ER stressorssuch as vinculin, the type I D-myo-inositol1,4,5-trisphosphate receptor, or protein kinase R, a eukaryoticinitiation factor 2 kinase. On the other hand, expression of hemeoxygenase-1 (HO-1), an antioxidant ER stress protein, was significantlyincreased 2.2-fold. In addition, unloading led to an increase incalsequestrin, the muscle-specific SR calcium-binding protein, at boththe mRNA (68%) and protein (24%) levels. Although disuse atrophy isassociated with a significant remodeling of muscle-specific proteinscontrolling SR calcium flux, it is not characterized by a prototypicalER stress response. However, the upregulation of HO-1 may indicate ERadaptation to oxidative stress during muscle unloading.

  相似文献   

16.
17.
In eukaryotic cells, complex membrane structures called organelles are highly developed to exert specialized functions. Mitochondria are one of such organelles consisting of the outer and inner membranes (OM and IM) with characteristic protein and phospholipid compositions. Maintaining proper phospholipid compositions of the membranes is crucial for mitochondrial integrity, thereby contributing to normal cell activities. As cellular locations for phospholipid synthesis are restricted to specific compartments such as the endoplasmic reticulum (ER) membrane and the mitochondrial inner membrane, newly synthesized phospholipids have to be transported and distributed properly from the ER or mitochondria to other cellular membranes. Although understanding of molecular mechanisms of phospholipid transport are much behind those of protein transport, recent studies using yeast as a model system began to provide intriguing insights into phospholipid exchange between the ER and mitochondria as well as between the mitochondrial OM and IM. In this review, we summarize the latest findings of phospholipid transport via mitochondria and discuss the implicated molecular mechanisms.   相似文献   

18.
1. Most proteins of cell organelles are synthesized as precursor proteins on cytosolic polysomes and are directed by signal sequences into the correct compartments. 2. In this review, the characteristics of mitochondrial protein uptake will be described, including the specific recognition, membrane translocation, proteolytic processing and folding of nuclear-encoded precursor proteins. 3. Recent studies indicate that a proteinaceous machinery located in the mitochondrial membranes and matrix performs these key steps of protein import.  相似文献   

19.
Aquaporin-2 (AQP2) is the vasopressin-sensitive water channel that regulates water reabsorption in the distal nephron collecting duct. Inherited AQP2 mutations that disrupt folding lead to nephrogenic diabetes insipidus (NDI) by targeting newly synthesized protein for degradation in the endoplasmic reticulum (ER). During synthesis, a subset of wild-type (WT) AQP2 is covalently modified by N-linked glycosylation at residue Asn123. To investigate the affect of glycosylation, we expressed WT AQP2 and four NDI-related mutants in Xenopus laevis oocytes and compared stability of glycosylated and nonglycosylated isoforms. In all constructs, 15–20% of newly synthesized AQP2 was covalently modified by N-linked glycosylation. At steady state, however, core glycosylated WT protein was nearly undetectable, whereas all mutants were found predominantly in the glycosylated form (60–70%). Pulse-chase metabolic labeling studies revealed that glycosylated isoforms of mutant AQP2 were significantly more stable than their nonglycosylated counterparts. For nonglycosylated isoforms, the half-life of WT AQP2 was significantly greater (>48 h) than that of mutant AQP2 (T126M 4.1 ± 1.0 h, A147T 4.2 ± 0.60 h, C181W 4.5 ± 0.50 h, R187C 6.8 ± 1.2 h). This is consistent with rapid turnover in the ER as previously reported. In contrast, the half-lives of mutant proteins containing N-linked glycans were similar to WT (25 h), indicating that differences in steady-state glycosylation profiles are caused by increased stability of glycosylated mutant proteins. These results suggest that addition of a single N-linked oligosaccharide moiety can partially compensate for ER folding defects induced by disease-related mutations. endoplasmic reticulum-associated degradation; nephrogenic diabetes insipidus; oocytes  相似文献   

20.
These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号