首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Enzymes encoded by bacterial MurE genes catalyze the ATP-dependent formation of uridine diphosphate- N -acetylmuramic acid-tripeptide in bacterial peptidoglycan biosynthesis. The Arabidopsis thaliana genome contains one gene with homology to the bacterial MurE : AtMurE . Under normal conditions AtMurE is expressed in leaves and flowers, but not in roots or stems. Sequence-based predictions and analyses of GFP fusions of the N terminus of AtMurE, as well as the full-length protein, suggest that AtMurE localizes to plastids. We identified three T-DNA-tagged and one Ds -tagged mutant alleles of AtMurE in A. thaliana . All four alleles show a white phenotype, and A. thaliana antisense AtMurE lines showed a pale-green phenotype. These results suggest that AtMurE is involved in chloroplast biogenesis. Cells of the mutants were inhibited in thylakoid membrane development. RT-PCR analysis of the mutant lines suggested that the expression of genes that depend on a multisubunit plastid-encoded RNA polymerase was decreased. To analyze the functional relationships between the MurE genes of cyanobacteria, the moss Physcomitrella patens and higher plants, a complementation assay was carried out with a P. patens ( Pp ) MurE knock-out line, which exhibits a small number of macrochloroplasts per cell. Although the Anabaena MurE, fused with the N-terminal region of PpMurE, complemented the macrochloroplast phenotype in P. patens , transformation with AtMurE did not complement this phenotype. These results suggest that AtMurE is functionally divergent from the bacterial and moss MurE proteins.  相似文献   

2.
3.
The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis   总被引:13,自引:0,他引:13  
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified from yeast (Rad55, Rad57 and Dmc1) to vertebrates (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3 and Dmc1). These Rad51-like proteins are all members of the genetic recombination and DNA damage repair pathways. The sequenced genome of Arabidopsis thaliana encodes putative homologues of all six vertebrate Rad51-like proteins. We have identified and characterized an Arabidopsis mutant defective for one of these, AtXRCC3, the homologue of XRCC3. atxrcc3 plants are sterile, while they have normal vegetative development. Cytological observation shows that the atxrcc3 mutation does not affect homologous chromosome synapsis, but leads to chromosome fragmentation after pachytene, thus disrupting both male and female gametogenesis. This study shows an essential role for AtXrcc3 in meiosis in plants and possibly in other higher eukaryotes. Furthermore, atxrcc3 cells and plants are hypersensitive to DNA-damaging treatments, supporting the involvement of this Arabidopsis Rad51-like protein in recombinational repair.  相似文献   

4.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

5.
T ranslocon at the o uter envelope membrane of c hloroplasts, 34  kDa (Toc34) is a GTP-binding component of the protein import apparatus within the outer envelope membrane of plastids. The Arabidopsis genome encodes two homologues of Toc34, designated atToc33 and atToc34. In this report, we describe the identification and characterization of two atToc34 knockout mutants, plastid protein import 3-1 ( ppi3-1 ) and ppi3-2 . Aerial tissues of the ppi3 mutants appeared similar to the wild type throughout development, and contained structurally normal chloroplasts that were able to efficiently import the Rubisco small subunit precursor (prSS) in vitro . The absence of an obvious ppi3 phenotype in green tissues presumably reflects the ability of atToc33 to substitute for atToc34 in the mutant, and the relatively high level of expression of the atTOC33 gene in these tissues. In the roots, where atTOC33 is expressed at a much lower level, significant growth defects were observed in both mutants: ppi3 roots were approximately 20–30% shorter than wild-type roots. Attempts to identify a double homozygote lacking atToc34 and atToc33 (by crossing the ppi3 mutants with ppi1 , an atToc33 knockout mutant) were unsuccessful, indicating that the function provided by atToc33/atToc34 is essential during early development. Plants that were homozygous for ppi1 and heterozygous for ppi3 displayed a chlorotic phenotype much more severe than that of the ppi1 single mutant. Furthermore, the siliques of these plants contained approximately 25% aborted seeds, indicating that the double homozygous mutation is embryo lethal. The data demonstrate that atToc33/atToc34 performs a central and essential role during plastid protein import, and indicate that the atToc34 isoform is relatively more important for plastid biogenesis in roots.  相似文献   

6.
In addition to regulating the ATPase cycle of Hsp70, a second critical role of Hsp40s has been proposed based on in vitro studies: binding to denatured protein substrates, followed by their presentation to Hsp70 for folding. However, the biological importance of this model is challenged by the fact that deletion of the substrate-binding domain of either of the two major Hsp40s of the yeast cytosol, Ydj1 and Sis1, leads to no severe defects, as long as regions necessary for Hsp70 interaction are retained. As an in vivo test of this model, requirements for viability were examined in a strain having deletions of both Hsp40 genes. Despite limited sequence similarity, the substrate-binding domain of either Sis1 or Ydj1 allowed cell growth, indicating they share overlapping essential functions. Furthermore, the substrate-binding domain must function in cis with a functional Hsp70-interacting domain. We conclude that the ability of cytosolic Hsp40s to bind unfolded protein substrates is an essential function in vivo.  相似文献   

7.
8.
Emission of methylsalicylate (MeSA), and occasionally of methylbenzoate (MeBA), from Arabidopsis thaliana leaves was detected following the application of some forms of both biotic and abiotic stresses to the plant. Maximal emission of MeSA was observed following alamethicin treatment of leaves. A gene (AtBSMT1) encoding a protein with both benzoic acid (BA) and salicylic acid (SA) carboxyl methyltransferase activities was identified using a biochemical genomics approach. Its ortholog (AlBSMT1) in A. lyrata, a close relative of A. thaliana, was also isolated. The AtBSMT1 protein utilizes SA more efficiently than BA, whereas AlBSMT1 catalyzes the methylation of SA less effectively than that of BA. The AtBSMT1 and AlBSMT1 genes showed expression in leaves under normal growth conditions and were more highly expressed in the flowers. In A. thaliana leaves, the expression of AtBSMT1 was induced by alamethicin, Plutella xylostella herbivory, uprooting, physical wounding, and methyl jasmonate. SA was not an effective inducer. Using a beta-glucuronidase (GUS) reporter approach, the promoter activity of AtBSMT1 was localized to the sepals of flowers, and also to leaf trichomes and hydathodes. Upon thrip damage to leaves, AtBSMT1 promoter activity was induced specifically around the lesions.  相似文献   

9.
Dong H  Deng Y  Mu J  Lu Q  Wang Y  Xu Y  Chu C  Chong K  Lu C  Zuo J 《Cell research》2007,17(5):458-470
Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spcl-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative ζ-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC 1/ZDS were substantially reduced in spc1-1, suggesting that SPC 1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1. 1, Lhcbl. 4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.  相似文献   

10.
11.
Arabinogalactan proteins (AGPs), a family of hydroxyproline-rich glycoproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of three members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expression pattern and function. AtAGP19 mRNA was abundant in stems, with moderate levels in flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature of leaves, roots, stems and flowers, as well as styles and siliques. A null T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant had: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction.  相似文献   

12.
COP1 is a negative regulator of Arabidopsis light-dependent development. Mutation of the COP1 locus causes constitutive photomorphogenesis in the dark. Here, we report the identification of an isoform of the COP1 protein, named COP1b, which is generated by alternative splicing. COP1b has a 60-amino acid deletion in the WD-40 repeat domain relative to the full-length COP1. This splicing step is light-independent and takes place mostly in mature seeds and in germinating seedlings. Transgenic Arabidopsis plants that overexpress COP1b show a de-etiolated phenotype in the dark, with a short hypocotyl, open and developed cotyledons. The transgenic seedlings are adult-lethal. These phenotypes closely resemble that of severe cop-1 mutants, indicating that COP1b has a dominant negative effect on COP1 function. Received: 28 April 1997 / Accepted: 8 October 1997  相似文献   

13.
14.
15.
The proper spatial and temporal expression and localization of mitogen‐activated protein kinases (MAPKs) is essential for developmental and cellular signalling in all eukaryotes. Here, we analysed expression, subcellular localization and function of MPK6 in roots of Arabidopsis thaliana using wild‐type plants and three mpk6 knock‐out mutant lines. The MPK6 promoter showed two expression maxima in the most apical part of the root meristem and in the root transition zone. This expression pattern was highly consistent with ‘no root’ and ‘short root’ phenotypes, as well as with ectopic cell divisions and aberrant cell division planes, resulting in disordered cell files in the roots of these mpk6 knock‐out mutants. In dividing root cells, MPK6 was localized on the subcellular level to distinct fine spots in the pre‐prophase band and phragmoplast, representing the two most important cytoskeletal structures controlling the cell division plane. By combining subcellular fractionation and microscopic in situ and in vivo co‐localization methods, MPK6 was localized to the plasma membrane (PM) and the trans‐Golgi network (TGN). In summary, these data suggest that MPK6 localizing to mitotic microtubules, secretory TGN vesicles and the PM is involved in cell division plane control and root development in Arabidopsis.  相似文献   

16.
Arabidopsis gain‐of‐resistance mutants, which show HR‐like lesion formation and SAR‐like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense‐response gene expression. The cpr30‐conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE‐SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30‐conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30‐conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30‐GFP fusion protein in the cytoplasm and nucleus. As an F‐box protein, CPR30 could interact with multiple Arabidopsis‐SKP1‐like (ASK) proteins in vivo. Co‐localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA‐dependent and SA‐independent defense signaling, most likely through the ubiquitin‐proteasome pathway in Arabidopsis.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号