首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Catecholamines and their metabolites have been proposed as markers of sympathetic nervous system stimulation. However, the adrenal medulla is a rich source of catecholamines and catecholamine metabolites and may play a significant role in plasma levels of these compounds. In addition to adrenal catecholamine metabolite efflux, the role of the catecholamine precursor 3,4-dihydroxyphenylalanine (DOPA) has not been fully evaluated. The simultaneous effluxes of catecholamines, metabolites, DOPA, and neuropeptides were measured in perfusates from isolated dog adrenals. The relative abundance of compounds detected consistently during unstimulated conditions was epinephrine ≫ norepinephrine > 3,4-dihydroxyphenylglycol > metanephrine > normetanephrine > dopamine > 3,4-dihydroxyphenylacetic acid > 3-methoxy-4-hydroxyphenylglycol ≥ DOPA ≫ [Met]enkephalin ≫ neuropeptide Y. Effluxes of analytes were not affected by cocaine and the ratios of catecholamines to metabolites increased dramatically with carbachol stimulation, consistent with negligible reuptake into adrenal cells. Thus, most of the 3,4-dihydroxyphenylglycol is expected to be derived from epinephrine and norepinephrine subsequent to translocation from chromaffin vesicles into the cytosol. The efflux of DOPA increased dramatically during stimulation with 30 µ M carbachol in a calcium-dependent manner. Efflux of DOPA during the initial stabilization period of the perfusion preparation declined exponentially, in parallel with the effluxes of the catecholamines and neuropeptides but not with metabolites. Evoked release of DOPA was Ca2+-dependent. These data suggest that DOPA can be stored and released exocytotically from chromaffin granules.  相似文献   

2.
Results of a number of pharmacological studies suggest that catecholamines play a regulatory role in cleavage, morphogenesis and cell differentiation during early animal embryonic development. Few studies, however, have actually assayed for levels of catecholamines in these early embryos by methods that are both sensitive and specific. In this investigation the catecholamines dopamine, norepinephrine and epinephrine and their precursor, dopa and metabolites were determined in eight different embryonic stages of the sea urchin, Lytechinus pictus from hatched blastula to late pluteus larva, using high performance liquid chromatography with electrochemical detection. Levels of each of the catecholamines exhibited unique developmental profiles and are consistent with a role for epinephrine in blastula and early gastrula embryos and for norepinephrine in gastrulation. Changes in levels of catecholamine precursor and metabolites suggest a changing pattern of synthetic and metabolic enzyme activity, which can, for the most part, explain the fluctuations in catecholamine levels during development from blastula to the pluteus larva stage.  相似文献   

3.
Tyrosine hydroxylase and tryptophan hydroxylase are widely held to be rate-limiting for the synthesis of the catecholamines and serotonin, respectively. Both enzymes are oxygen-requiring and kinetic properties suggest that oxygen availability may limit synthesis of these neurotransmitters in the brain. Using pheochromocytoma cells as a cell culture model for catecholamine synthesis, and neuroblastoma cells as a model for serotonin synthesis, enzyme activity was measured under control and hypoxic conditions. Both tyrosine hydroxylase and tryptophan hydroxylase activity increased substantially with chronic exposure but not with acute exposure. In the case of tyrosine hydroxylase, increased enzyme content with hypoxia accounts for increased activity. This suggests a mechanism for the maintenance of neurotransmitter synthesis with chronic hypoxia. Measurement of intracellular metabolites revealed no change in dopamine or norepinephrine in hypoxic pheochromocytoma cells, consistent with a simple adaptive mechanism. However, in neuroblastoma cells, hypoxia was associated with an increase in serotonin concentration. The reasons for this are still unclear.  相似文献   

4.
We previously reported that melanogenic enzyme TRP-2 (or DCT for DOPAchrome tautomerase) expression in WM35 melanoma cells resulted in increased intracellular GSH levels, reduction in DNA damage induced by free radicals, and decreased cell sensitivity to oxidative stress. These effects seemed to depend on a particular cellular context, because none of them were found to occur in HEK epithelial cells. We postulated that the TRP-2 beneficial effect observed in WM35 cells in the oxidative stress situation may relate to quinone metabolization and, more precisely, to the ability of TRP-2 to clear off related toxic metabolites, resulting in a global redox status modification. Here, a comparative protein expression profiling of catecholamine biosynthesis enzymes and detoxification enzymes was conducted in WM35 melanoma cells and in HEK epithelial cells, in comparison with normal human melanocytes. Results showed that WM35 cells, but not HEK cells, expressed enzymes involved in catecholamine biosynthesis, suggesting that their quinone-related toxic metabolites were present in WM35 cells but not in HEK cells. To address the issue of a possible TRP-2 beneficial effect toward quinone toxicity, cell survival experiments were then conducted in HEK cells using dopamine and hydroquinone at toxic concentrations. We showed that TRP-2 expression significantly reduced HEK cell sensitivity to both compounds. This beneficial property of TRP-2 was likely to depend on the integrity of its DOPAchrome tautomerase catalytic site, because both TRP-2(R194Q) and TRP-2(H189G), which have lost their DOPAchrome tautomerase activity, failed to modify the HEK cell response to dopamine and hydroquinone. These results suggest that TRP-2 acts on quinone metabolites other than DOPAchrome, e.g., in the catecholamine pathway, and limits their deleterious effects.  相似文献   

5.
We have previously reported that the cAMP/protein kinase A (PKA) pathway is important in the gene regulation of both induction and basal expressions of the catecholamine synthesizing enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has been shown to activate the intracellular cAMP/PKA pathway. In the present study, using primary cultured bovine adrenal medullary cells, we determined whether the basal activity of the PACAP receptor might play a role in the maintenance of the basal expression of these enzyme genes via the cAMP/PKA pathway. The potent PACAP receptor antagonist PACAP (6-38) caused a reduction of TH and DBH mRNA levels in a dose dependent manner as well as their enzyme activities and TH protein level. The effects of PACAP (6-38) and the PKA inhibitor H-89 exhibited generally similar trends, and were not additive in the reduction of TH and DBH gene expression and activities, suggesting that they take a common intracellular signaling pathway. The antagonist also caused decreases in the intracellular norepinephrine and epinephrine levels similar to the effect of H-89. Taken together, the data suggests that PACAP is involved in the regulation of maintenance of the catecholamine synthesizing enzymes TH and DBH by utilizing the cAMP/PKA pathway.  相似文献   

6.
To explore the role of dopamine and its metabolites for change of reproductive states of workers in honeybees (Apis mellifera), brain levels of dopamine relative substances were measured and localized in both normal workers and queenless workers. Dopamine and two possible metabolites of dopamine, N-acetyldopamine (NADA) and norepinephrine were detected in brain extracts. The brain levels of dopamine, NADA and norepinephrine were positively correlated with ovary development. Individuals with high dopamine levels had high levels of NADA or norepinephrine, suggesting that these metabolites might be involved in the change of reproductive sates of workers. Dopamine was distributed mainly in the protocerebrum, whereas NADA was in both the optic lobes and the protocerebrum. Dopamine levels in each distinct brain regions were higher in queenless workers than in normal workers, whereas there was a higher NADA level in the optic lobes in queenless workers than in normal workers. These results suggest that dopamine might be stored and/or released around the protocerebrum and the deutocerebrum, and also diffuse to the optic lobes where dopamine secretory cells are absent, resulting in high NADA levels in the optic lobes. The different manner of level changes of dopamine and its metabolites in each brain region might cause compound behavioural modulations in reproductive workers.  相似文献   

7.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

8.
Intracellular concentrations of catecholamines were determined in wild-type and mutant Tetrahymena thermophila, using the highly sensitive techniques of high-performance liquid chromatography and electro-chemical detection. Catecholamines were determined in these cell strains grown under various steady-state conditions, including those which initiate and maintain repression of galactokinase gene expression. Wild-type cells grown in defined minimal medium supplemented with 1% glycerol, exhibiting derepressed galactokinase synthesis, were found to contain considerable quantities of dopa (3,4-dihydroxyphenylalanine) and dopamine, but no detectable levels of either norepinephrine or epinephrine. Analyses of wild-type cells revealed a strong positive correlation between the internal concentration of dopa and expression of the galactokinase gene, both of which are regulated by exogenous carbohydrates, catecholamine agonists, or dibutyryl-cAMP; an analogous relationship between intracellular dopamine concentrations and galactokinase activity was not found. In addition, a correlation between intracellular dopa content and the phenotypic expression of galactokinase in various mutants deficient in the catecholamine biosynthetic pathway or in glucokinase further confirms the role of dopa as a primary effector in the regulation of galactokinase gene expression.  相似文献   

9.
10.
The precursor pool of dopamine for norepinephrine synthesis was investigated in cultured bovine adrenomedullary chromaffin cells incubated with [14C]tyrosine. Under conditions where the intracellular [14C]tyrosine specific activity was constant and [14C]dopamine synthesis was maximal, [14C]dopamine and [14C]norepinephrine accumulated over time, and the total intracellular dopamine content more than doubled within 120 min. When [14C]norepinephrine synthesis was calculated at different times based on the specific activity of [14C]dopamine, this rate was approximately equal to the rate of [14C]dopamine synthesis and was, thus, inconsistent with the observed dopamine accumulation. However, the rate of [14C]norepinephrine synthesis based on the [14C]tyrosine specific activity accounted for the dopamine accumulation, an observation suggesting that newly synthesized dopamine, i.e., dopamine with a specific activity equivalent to that of its precursor, [14C]tyrosine, is preferentially utilized for norepinephrine synthesis. Further studies showed that the subcellular distribution of [14C]dopamine was identical to that of norepinephrine and epinephrine and that the accumulated [14C]dopamine could be converted to norepinephrine within the chromaffin vesicle if dopamine uptake was blocked. Taken together, these results suggest that a small intravesicular dopamine pool, rapidly replenished by newly synthesized dopamine, serves as the substrate for dopamine beta-hydroxylase. Several mechanisms to account for this observation are discussed.  相似文献   

11.
Diabetes mellitus is a frequent cause of kidney function damage with diabetic nephropathy being predominantly related to glomerular dysfunction. Diabetes is capable of interfering with distinct hormonal systems, as well as catecholamine metabolism. Since mesangial cells, the major constituent of renal glomerulus, constitute a potential site for catecholamine production, the present study was carried out to investigate alterations in catecholamine metabolism in cultured mesangial cells from the nonobese diabetic mouse, a well-established model for type I diabetes. We evaluated mesangial cells from normoglycemic and hyperglycemic nonobese diabetic mice, as well as cells from normoglycemic Swiss mice as control. Mesangial cells from normoglycemic mice presented similar profiles concerning all determinations. However, cells isolated from hyperglycemic animals presented increased dopamine and norepinephrine production/secretion. Among the studied mechanisms, we observed an upregulation of tyrosine hydroxylase expression accompanied by increased tetrahydrobiopterin consumption, the tyrosine hydroxylase enzymatic cofactor. However, this increase in synthetic pathways was followed by decreased monoamine oxidase activity, which corresponds to the major metabolic pathway of catecholamines in mesangial cells. In addition, whole kidney homogenates from diabetic animals also presented increased dopamine and norepinephrine levels when compared to normoglycemic animals. Thus, our results suggest that diabetes alters catecholamine production by interfering with both synthesizing and degrading enzymes, suggesting a possible role of catecholamine in the pathogenesis of acute and chronic renal complications of diabetes mellitus.  相似文献   

12.
Abstract: Alterations in the catecholaminergic neurotransmitter systems have been shown to occur in hepatic failure and may contribute to development of hepatic encephalopathy. In the present study we used the rat after complete hepatectomy as a model for study of changes that occur in brain in acute liver failure. We attempted to identify processes in the synthesis, storage, and metabolism of catecholamine neurotransmitters that might be changed during liver failure by measuring levels of, together with those of norepinephrine and dopamine, the precursor (3,4-dihydroxyphenylalanine) and the neuronal metabolites of dopamine and norepinephrine (3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylglycol, respectively) in different regions of brains of control rats and of rats after hepatectomy. We found that in most brain regions of hepatectomized rats there were increases in the concentration of 3,4-dihydroxyphenylalanine or of dopamine but decreases in the concentrations of norepinephrine or of 3,4-dihydroxyphenylglycol. The particulate/supernatant ratios of catecholamines are indices of retention of neurotransmitters in storage sites. These ratios were not different in brain regions between control rats and hepatectomized rats, suggesting that vesicular retention of catecholamines in brain was not impaired after hepatectomy. The data suggest that inhibition of dopamine-β-hydroxylase might be a characteristic of hepatic failure.  相似文献   

13.
Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal target, song control region area X, in the regulation of individual differences in the motivation to sing. We used high pressure liquid chromatography with electrochemical detection to measure dopamine, norepinephrine and their metabolites in micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris). We categorized males as sexually motivated or non-sexually motivated based on individual differences in song produced in response to a female. Dopamine markers and norepinephrine in VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic projections from VTA to striatum in the motivation to communicate and highlight novel patterns of catecholamine activity in area X, VTA, and GCt associated with individual differences in sexually-motivated and non-sexually-motivated communication. Correlations between dopamine and norepinephrine markers also suggest that norepinephrine may contribute to individual differences in communication by modifying dopamine neuronal activity in VTA and GCt.  相似文献   

14.
15.
Ascorbic acid donates electrons to dopamine beta-monooxygenase during the hydroxylation of dopamine to norepinephrine in vitro. However, the possible role of ascorbic acid in norepinephrine biosynthesis in vivo has not been defined. We therefore investigated the effect of newly accumulated ascorbic acid on catecholamine biosynthesis in cultured bovine adrenal chromaffin cells. Cells supplemented for 3 h with ascorbic acid accumulated 9-fold more ascorbic acid than found in control cells. Under these conditions, the cells loaded with ascorbate were found to double the rate of norepinephrine biosynthesis from [14C]tyrosine compared to control. By contrast, the amounts present of [14C] 3,4-dihydroxyphenylalanine and [14C]dopamine synthesized from [14C]tyrosine were unaffected by the preloading of ascorbic acid. Ascorbate preloaded cells incubated with [3H]dopamine also showed a similar increase in the rate of norepinephrine formation, without any change in dopamine transport into the cells. Thus, these data were consistent with ascorbate action at the dopamine beta-monooxygenase step. In order to determine if ascorbate could interact directly with dopamine beta-monooxygenase localized within chromaffin granules, we studied whether isolated chromaffin granules could accumulate ascorbic acid. Ascorbic acid was not transported into chromaffin granules by an uptake or exchange process, despite coincident [3H]dopamine uptake which was Mg-ATP dependent. These data indicate that ascorbic acid does augment norepinephrine biosynthesis in intact chromaffin cells, but by a mechanism that might enhance the rate of dopamine hydroxylation indirectly.  相似文献   

16.
We have measured, by a specific radioenzymoassay, the plasma concentration of dopamine (DA) and norepinephrine (NE) and by gas chromatography the urinary excretion of some catecholamine metabolites (HVA, homovanillic acid, DOPAC, dihydroxyphenyl acetic acid; VMA, vanilmandelic acid, and DOPEG, dihydroxyphenyl glycol) in three groups of rats with portal hypertension: cirrhotic rats (CR), rats with progressive portal hypertension (PPH) and rats with progressive hepatic congestion (PHC). The three groups of rats had portal hypertension. PPH and PHC had also intrahepatic hypertension. CR rats showed an increased urinary excretion of NE and DA metabolites with a normal plasma concentration of these catecholamines, suggesting an increased turnover of NE and DA in this experimental model. PPH animals had a high plasma DA concentration with a decreased urinary excretion of catecholamine metabolites. PHC showed high plasma DA and NE levels with normal or increased urinary excretion of its metabolites. These results suggest that an increased neural activity is present in the early stages of experimental cirrhosis in rats and this alteration does not seem directly related to the portal hypertension but perhaps to the intrahepatic hypertension or to the hepatocellular damage.  相似文献   

17.
Pheochromocytoma cells contain amine oxidase (flavin-containing), and convert dopamine and norepinephrine to deaminated metabolites. Dihydroxyphenylacetic acid is the major dopamine metabolite produced by the cells, whereas dihydroxyphenylglycol is the predominant metabolite of norepinephrine. Cells incubated under control conditions produce deaminated dopamine metabolites at a rate of about 30 pmol/min per mg protein, and dihydroxyphenylglycol at a rate of approx. 10 pmol/min per mg protein. Activation of tyrosine 3-monooxygenase increases the formation of dihydroxyphenylacetic acid, but does not greatly affect the production of dihydroxyphenylglycol. Inhibition of aromatic-L-amino-acid decarboxylase decreases the production of dihydroxyphenylacetic acid, but does not alter the production of dihydroxyphenylglycol. These results are consistent with the idea that newly synthesized dopamine represents the major source of cytoplasmic dopamine, whereas cytoplasmic norepinephrine is derived largely from catecholamine stores in secretory vesicles. The concentrations of dopamine and of norepinephrine in the cytoplasm of pheochromocytoma cells were estimated by measuring the substrate dependence of amine oxidase activity in extracts of these cells. By this method, the cytoplasmic concentrations of dopamine and of norepinephrine were estimated to be in the range of 0.5 to 1 microM. Incubation of the cells with extracellular norepinephrine or with reserpine results in an increase in the production of dihydroxyphenylglycol, and in inhibition of tyrosine 3-monoxygenase activity. Both of these effects are presumably mediated by a rise in the cytoplasmic norepinephrine concentration. Analysis of the relationship between norepinephrine metabolism and tyrosine 3-monooxygenase activity indicates that the apparent Ki of this enzyme for norepinephrine in intact cells is 10-15-times the basal cytoplasmic concentration of norepinephrine, or approx. 10 microM.  相似文献   

18.
Dopamine interaction with target cells undoubtably involves binding to plasma membrane receptors. However, the well documented cell growth inhibitory activity of this catecholamine suggests nuclear regulation. To evaluate this possibility, we determined the intracellular localization and binding of [3H]dopamine in human retinoblastoma (Y-79 cells), normal mouse fibroblasts (LM-cells), and in the rat uterus. Cytosol and purified nuclear preparations devoid of plasma membrane components contained specific, saturable, high affinity (Kd approximately 20 nM) binding sites for [3H]dopamine. The nuclear binding affinity for dopamine, L-dopa, and L-dopa methyl ester correlated with the inhibitory effects of these compounds on cell proliferation, suggesting that intracellular dopamine binding sites may also be involved in cellular response to catecholamines.  相似文献   

19.
Vascular reactivity to norepinephrine in rats with cirrhosis of the liver   总被引:2,自引:0,他引:2  
Vascular reactivity to norepinephrine was studied in rats with early cirrhosis of the liver and in control rats. Cirrhotic rats showed water and sodium retention but not ascites. Studies were performed in whole animals, isolated hindquarters, and isolated femoral arteries. Plasma catecholamine levels were measured by radioenzymoassay and their urinary metabolites by gas-liquid chromatography. Plasma norepinephrine was 331 +/- 49 pg/mL (mean +/- SEM) in control rats and 371 +/- 66 pg/mL in cirrhotic animals (p greater than 0.05). No differences in plasma epinephrine or dopamine were observed. Urinary excretion of catecholamine metabolites was increased in cirrhotic rats. These data suggest a moderate activation of the sympathetic nervous system. In basal conditions, cirrhotic rats showed lower mean arterial pressure than controls (101 +/- 4 vs. 116 +/- 4 mmHg (1 mmHg = 133.3 Pa); p less than 0.01). However, perfused hindlimb resistance was similar in cirrhotic and in control animals. In the whole animal and in the perfused hindquarter, the contractile response to norepinephrine was similar for control and for cirrhotic rats. The contractile response to norepinephrine exhibited by isolated femoral arteries was similar in those from cirrhotic and control rats. This indicates that the peripheral vascular bed has a well-maintained ability to constrict in response to norepinephrine, suggesting that circulatory abnormalities in early experimental cirrhosis are not caused by refractoriness of the vascular smooth muscle to norepinephrine.  相似文献   

20.
Abstract: To investigate the regulation of norepinephrine transporter mRNA in vivo, we analyzed the effects of reserpine on its expression in the rat adrenal medulla and locus ceruleus. First, PCR was used to clone a 0.5-kb rat cDNA fragment that exhibits 87% nucleotide identity to the corresponding human norepinephrine transporter cDNA sequence. In situ, the cDNA hybridizes specifically within norepinephrine-secreting cells, but in neither dopamine nor serotonin neurons, suggesting strongly it is a partial rat norepinephrine transporter cDNA. Reserpine, 10 mg/kg administered 24 h premortem, decreased steady-state levels of norepinephrine transporter mRNA in the adrenal medulla by ∼65% and in the locus ceruleus by ∼25%, as determined by quantitative in situ hybridization. Northern analysis confirmed the results of the in situ hybridization analysis in the adrenal medulla but did not detect the smaller changes observed in the locus ceruleus. Both analyses showed that reserpine increased tyrosine hydroxylase expression in the adrenal medulla and locus ceruleus. These results suggest that noradrenergic neurons and adrenal chromaffin cells can coordinate opposing changes in systems mediating catecholamine uptake and synthesis, to compensate for catecholamine depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号