首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.  相似文献   

3.
C Giorgi  A Fatica  R Nagel  I Bozzoni 《The EMBO journal》2001,20(23):6856-6865
An external stem, essential for the release of small nucleolar RNAs (snoRNAs) from their pre-mRNAs, flanks the majority of yeast intron-encoded snoRNAs. Even if this stem is not a canonical Rnt1p substrate, several experiments have indicated that the Rnt1p endonuclease is required for snoRNA processing. To identify the factors necessary for processing of intron-encoded snoRNAs, we have raised in vitro extracts able to reproduce such activity. We found that snoRNP factors are associated with the snoRNA- coding region throughout all the processing steps, and that mutants unable to assemble snoRNPs have a processing-deficient phenotype. Specific depletion of Nop1p completely prevents U18 snoRNA synthesis, but does not affect processing of a dicistronic snoRNA-coding unit that has a canonical Rnt1p site. Correct cleavage of intron-encoded U18 and snR38 snoRNAs can be reproduced in vitro by incubating together purified Nop1p and Rnt1p. Pull-down experiments showed that the two proteins interact physically. These data indicate that cleavage of U18, snR38 and possibly other intron-encoded snoRNAs is a regulated process, since the stem is cleaved by the Rnt1p endonuclease only when snoRNP assembly has occurred.  相似文献   

4.
5.
Nucleolar localization of box C/D small nucleolar (sno) RNAs requires the box C/D motif and, in vertebrates, involves transit through Cajal bodies (CB). We report that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub-nucleolar structure, the nucleolar body (NB). The human survival of motor neuron protein (SMN), a marker of gems/CB, specifically localizes to the NB when expressed in yeast, supporting similarities between these structures. Box C/D snoRNA accumulation in the NB was decreased by mutation of Srp40 and increased by mutation of Nsr1p, two related nucleolar proteins that are homologous to human Nopp140 and nucleolin, respectively. Box C/D snoRNAs also failed to accumulate in the NB, and became delocalized to the nucleoplasm, upon depletion of any of the core snoRNP proteins, Nop1p/fibrillarin, Snu13p, Nop56p and Nop5p/Nop58p. We conclude that snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete snoRNP to functional sites of ribosome synthesis.  相似文献   

6.
Eukaryotic nucleoli contain a large family of box C+D small nucleolar RNA (snoRNA) species, all of which are associated with a common protein Nop1p/fibrillarin. Nop58p was identified in a screen for synthetic lethality with Nop1p and shown to be an essential nucleolar protein. Here we report that a Protein A-tagged version of Nop58p coprecipitates all tested box C+D snoRNAs and that genetic depletion of Nop58p leads to the loss of all tested box C+D snoRNAs. The box H+ACA class of snoRNAs are not coprecipitated with Nop58p, and are not codepleted. The yeast box C+D snoRNAs include two species, U3 and U14, that are required for the early cleavages in pre-rRNA processing. Consistent with this, Nop58p depletion leads to a strong inhibition of pre-rRNA processing and 18S rRNA synthesis. Unexpectedly, depletion of Nop58p leads to the accumulation of 3' extended forms of U3 and U24, showing that the protein is also involved in snoRNA synthesis. Nop58p is the second common component of the box C+D snoRNPs to be identified and the first to be shown to be required for the stability and for the synthesis of these snoRNAs.  相似文献   

7.
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.  相似文献   

8.
9.
The eukaryotic nucleolus contains a diverse population of small nucleolar RNAs (snoRNAs) that have been categorized into two major families based on evolutionarily conserved sequence elements. U14 snoRNA is a member of the larger, box C/D snoRNA family and possesses nucleotide box C and D consensus sequences. In previous studies, we have defined a U14 box C/D core motif that is essential for intronic U14 snoRNA processing. These studies also revealed that nuclear proteins that recognize boxes C/D are required. We have now established an in vitro U14 snoRNP assembly system to characterize protein binding. Electrophoretic mobility-shift analysis demonstrated that all the sequences and structures of the box C/D core motif required for U14 processing are also necessary for protein binding and snoRNP assembly. These required elements include a base paired 5',3' terminal stem and the phylogenetically conserved nucleotides of boxes C and D. The ability of other box C/D snoRNAs to compete for protein binding demonstrated that the box C/D core motif-binding proteins are common to this family of snoRNAs. UV crosslinking of nuclear proteins bound to the U14 core motif identified a 65-kDa mouse snoRNP protein that requires boxes C and D for binding. Two additional core motif proteins of 55 and 50 kDa were also identified by biochemical fractionation of the in vitro-assembled U14 snoRNP complex. Thus, the U14 snoRNP core complex is a multiprotein particle whose assembly requires nucleotide boxes C and D.  相似文献   

10.
11.
12.
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82–R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3′-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317–352–Hit1p70–164 complex reveals a novel mode of protein–protein association explaining the strong stability of the Rsa1p–Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p–Rsa1p–Hit1p heterotrimer.  相似文献   

13.
14.
Box H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) play key roles in the synthesis of eukaryotic ribosomes. The ways in which these particles are assembled and correctly localized in the dense fibrillar component of the nucleolus remain largely unknown. Recently, the essential Saccharomyces cerevisiae Naf1p protein (encoded by the YNL124W open reading frame) was found to interact in a two-hybrid assay with two core protein components of mature H/ACA snoRNPs, Cbf5p and Nhp2p (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2001). Here we show that several H/ACA snoRNP components are weakly but specifically immunoprecipitated with epitope-tagged Naf1p, suggesting that the latter protein is involved in H/ACA snoRNP biogenesis, trafficking, and/or function. Consistent with this, we find that depletion of Naf1p leads to a defect in 18S rRNA accumulation. Naf1p is unlikely to directly assist H/ACA snoRNPs during pre-rRNA processing in the dense fibrillar component of the nucleolus for two reasons. Firstly, Naf1p accumulates predominantly in the nucleoplasm. Secondly, Naf1p sediments in a sucrose gradient chiefly as a free protein or associated in a complex of the size of free snoRNPs, whereas extremely little Naf1p is found in fractions containing preribosomes. These results are more consistent with a role for Naf1p in H/ACA snoRNP biogenesis and/or intranuclear trafficking. Indeed, depletion of Naf1p leads to a specific and dramatic decrease in the steady-state accumulation of all box H/ACA snoRNAs tested and of Cbf5p, Gar1p, and Nop10p. Naf1p is unlikely to be directly required for the synthesis of H/ACA snoRNP components. Naf1p could participate in H/ACA snoRNP assembly and/or transport.  相似文献   

15.
Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D' of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-L-methionine-binding region of Nop1p is responsible for the catalytic activity.  相似文献   

16.
Naf1 p is a box H/ACA snoRNP assembly factor   总被引:6,自引:1,他引:5       下载免费PDF全文
  相似文献   

17.
18.
19.
Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs.   总被引:29,自引:3,他引:26  
The small nucleolar ribonucleoprotein particles containing H/ACA-type snoRNAs (H/ACA snoRNPs) are crucial trans-acting factors intervening in eukaryotic ribosome biogenesis. Most of these particles generate the site-specific pseudouridylation of rRNAs while a subset are required for 18S rRNA synthesis. To understand in detail how these particles carry out these functions, all of their protein components have to be characterized. For that purpose, we have affinity-purified complexes containing epitope-tagged Gar1p protein, previously shown to be part of H/ACA snoRNPs. Under the conditions used, three polypeptides of 65, 22 and 10 kDa apparent molecular weight specifically copurify with epitope-tagged Gar1p. The 22 and 10 kDa polypeptides were identified as Nhp2p and a novel protein we termed Nop10p, respectively. Both proteins are conserved, essential and present in the dense fibrillar component of the nucleolus. Nhp2p and Nop10p are specifically associated with all H/ACA snoRNAs and are essential to the function of H/ACA snoRNPs. Cells lacking Nhp2p or Nop10p are impaired in global rRNA pseudouridylation and in the A1 and A2 cleavage steps of the pre-rRNA required for the synthesis of mature 18S rRNA. These phenotypes are probably a direct consequence of the instability of H/ACA snoRNAs and Gar1p observed in cells deprived of Nhp2p or Nop10p. Our results suggest that Nhp2p and Nop10p, together with Cbf5p, constitute the core of H/ACA snoRNPs.  相似文献   

20.
U16 belongs to the family of box C/D small nucleolar RNAs (snoRNAs) whose members participate in ribosome biogenesis, mainly acting as guides for site-specific methylation of the pre-rRNA. Like all the other members of the family, U16 is associated with a set of protein factors forming a ribonucleoprotein particle, localized in the nucleolus. So far, only a few box C/D-specific proteins are known: in Xenopus laevis, fibrillarin and p68 have been identified by UV crosslinking and shown to require the conserved boxes C and D for snoRNA interaction. In this study, we have identified an additional protein factor (p62), common to box C/D snoRNPs, that crosslinks to the internal stem region, distinct from the conserved box C/D "core motif," of U16 snoRNA. We show here that, although the absence of the core motif and, as a consequence, of fibrillarin and p68 binding prevents processing and accumulation of the snoRNA, the lack of the internal stem does not interfere with the efficient release of U16 from its host intron and only slightly affects snoRNA stability. Because this region is likely to be the binding site for p62, we propose that this protein plays an accessory role in the formation of a mature and stable U16 snoRNP particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号