首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shin J  Hong SY  Chung K  Kang I  Jang Y  Kim DS  Lee W 《Biochemistry》2003,42(49):14408-14415
Disintegrins are potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. A new disintegrin, salmosin, isolated from the venom of the Korean snake Agkistrodon halys brevicaudus, has been characterized by mass spectrometry and NMR spectroscopy, and its in vitro biological activity has been assessed. The IC(50) value of the purified salmosin was determined to be 2.2 nM in an assay for the inhibition of glycoprotein IIb-IIIa/fibrinogen interaction. Salmosin also inhibited the bovine capillary endothelial cell proliferation induced by bFGF in a dose-dependent manner. The NMR solution structures were well converged with a root-mean-square deviation of 0.76 A for backbone atoms among the 20 lowest energy structures, except for the arginylglycylaspartic acid (RGD) loop. The structure revealed that the conserved RGD motif with an unusual finger shape is distal from the rigid core of the C-terminal domain. Furthermore, even though the RGD motif did not interact with the hydrophobic core of the protein, it was stabilized by a network of molecular contacts through a small antiparallel beta-sheet comprising residues of Ile46-Ala50 and Asp54-Tyr58. Last, the electrostatic charge distribution on the surface of salmosin differs dramatically from that of other disintegrin proteins in that there is a cluster of negatively charged residues in close proximity to the RGD loop.  相似文献   

2.
Disintegrins are a family of small proteins containing an Arg-Gly-Asp (RGD) sequence motif that binds specifically to integrin receptors. Since the integrin is known to serve as the final common pathway leading to aggregation via formation of platelet-platelet bridges, disintegrins act as fibrinogen receptor antagonists. Here, we report the first crystal structure of a disintegrin, trimestatin, found in snake venom. The structure of trimestatin at 1.7A resolution reveals that a number of turns and loops form a rigid core stabilized by six disulfide bonds. Electron densities of the RGD sequence are visible clearly at the tip of a hairpin loop, in such a manner that the Arg and Asp side-chains point in opposite directions. A docking model using the crystal structure of integrin alphaVbeta3 suggests that the Arg binds to the propeller domain, and Asp to the betaA domain. This model indicates that the C-terminal region is another potential binding site with integrin receptors. In addition to the RGD sequence, the structural evidence of a C-terminal region (Arg66, Trp67 and Asn68) important for disintegrin activity allows understanding of the high affinity and selectiveness of snake venom disintegrin for integrin receptors. The crystal structure of trimestatin should provide a useful framework for designing and developing more effective drugs for controlling platelet aggregation and anti-angiogenesis cancer.  相似文献   

3.
采用Clontech链转换建库试剂盒 ,建立了中国长白山乌苏里蝮蛇毒腺cDNA文库 ,从中克隆了金属蛋白酶 解整合蛋白Ussurin ,并进行了序列分析。结果显示 ,Ussurin开框读码序列由 14 34bp组成 ,编码 4 78个氨基酸。由核苷酸顺序推导的氨基酸序列可以看出 ,Ussurin最初的翻译产物是酶原前体 ;依次含有 18氨基酸组成的信号肽 ,171氨基酸组成的酶原区和由 2 89氨基酸组成的Ussurin(2 0 0氨基酸组成的金属蛋白酶结构域、16氨基酸组成的间隔区和 73氨基酸组成的解整合蛋白结构域 )。Ussurin的金属蛋白酶结构域含有 3对二硫键 ;解整合蛋白结构域含有 6对二硫键和特征性RGD(精氨酸 甘氨酸 天冬氨酸 )结构。其基因序列和结构域组成与GenBank中蛇毒金属蛋白酶 解整合蛋白呈现高度同源性属于P Ⅱ。氨基酸序列blast比对发现 ,酶原区和解整链蛋白结构域呈现极高的同源性 ,而金属蛋白酶结构域却出现了极高的变异 ,推测这些变异结构区是为了适应不同的底物、不同受体或同一受体的不同结构域  相似文献   

4.
Fertilin beta (also known as ADAM2) is a cell adhesion molecule on the surface of mammalian sperm that participates in sperm-egg membrane binding. Fertilin beta is a member of the molecular family known as ADAMs or MDCs. These proteins have a disintegrin domain with homology to integrin ligands found in snake venoms; several of these snake proteins have an RGD tripeptide presented on an extended "disintegrin loop." However, fertilin beta lacks an RGD tripeptide and instead has the consensus sequence X(D/E)ECD (QDECD in mouse fertilin beta) in its putative disintegrin loop, and there is controversy over which amino acids comprise the active site of the fertilin beta disintegrin loop. We have used point-mutated versions of the sequence AQDECDVT and two bioassays to identify the key functional amino acids of this sequence from the mouse fertilin beta disintegrin domain. Amino acid substitutions for the terminal aspartic acid residue of the QDECD sequence result in dramatically reduced activities in the two assays for protein function, implicating the terminal aspartic acid residue as critical for protein function. Substitutions for the glutamic acid and the cysteine residues in the QDECD sequence result in slight reductions in activity, whereas substitution of the first aspartic acid has virtually no effect. These data suggest that the conserved ECD sequence of the mouse fertilin beta disintegrin loop, especially the terminal D residue, contributes more to the protein's activity than does the QDE sequence that aligns with the RGD tripeptide in other disintegrins.  相似文献   

5.
为了探讨出血毒金属蛋白酶结构功能关系 ,通过 RT- PCR方法 ,从皖南尖吻蝮蛇( Agkistrodon acutus)毒腺总 RNA中扩增得到编码 P- 型出血毒金属蛋白酶的完整类去整合蛋白和富含半胱氨酸两个结构域 c DNA( AA/DC) .它全长 964bp的 c DNA,开放阅读框架编码 2 1 6个氨基酸残基 ,序列比较分析表明它同来自 Bothrops jararaca的 jararhagin- C、来自 Crotalus atrox的 catrocollastatin- C有很高的同源性 .在类去整合蛋白结构域中 ,Ser- Glu- Cys- Asp( SECD)代替了去整合蛋白中相应部位的 Arg- Gly- Asp( RGD)三肽序列 .将编码区基因克隆入 p GEX- 2 T载体中 ,转化大肠杆菌 TG- 1 ,用 IPTG诱导表达 ,表达产物具有抑制胶原诱导的血小板凝集活性 ,但不抑制ADP诱导的血小板凝集 .该研究为进一步阐述蛇毒金属蛋白酶结构功能关系和药物开发奠定了基础 .  相似文献   

6.
Okuda D  Koike H  Morita T 《Biochemistry》2002,41(48):14248-14254
Disintegrin is a potent platelet aggregation inhibitor isolated from various snake venoms. The cDNA of the snake venom disintegrin family precursor is well-known to encode pre-peptide, metalloprotease, spacer, and disintegrin domains. Recently, new types of disintegrins, dimeric disintegrins, have been isolated, and their amino acid sequences were determined to be approximately 65 amino acid residues in each subunit. We isolated a novel heterodimeric disintegrin, acostatin, from the venom of Agkistrodon contortrix contortrix, which consisted of 63 and 64 amino acid residues in the alpha chain and beta chain, and both chains had the Arg-Gly-Asp (RGD) sequence for binding platelet GPIIb/IIIa. The cDNA lengths of the alpha chain and the beta chain of acostatin were 902 bp and 2031 bp, respectively. The acostatin alpha chain precursor, surprisingly, has the only disintegrin domain alone and lacked almost all of the pre-peptide and metalloprotease domains. The precursor of the acostatin beta chain belongs to a well-known motif of disintegrin precursors. Furthermore, both precursors of alpha and beta chains of another heterodimeric disintegrin, piscivostatin, also have the same domain structures as those of acostatin subunits. These results indicate that the cDNAs of heterodimeric disintegrin subunits have quite a different length of coding region and their precursors have a novel domain structure of disintegrin-family proteins.  相似文献   

7.
A novel disintegrin, jerdonatin, was purified to homogeneity from Trimeresurus jerdonii venom by gel filtration and reversed-phase high-pressure liquid chromatography. We isolated the cDNA encoding jerdonatin from the snake venom gland. Jerdonatin cDNA precursor encoded pre-peptide, metalloprotease and disintegrin domain. Jerdonatin is composed of 72 amino acid residues including 12 cysteines and the tripeptide sequence Arg-Gly-Asp (RGD), a well-known characteristic of the disintegrin family. Molecular mass of jerdonatin was determined to be 8011 Da by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Jerdonatin inhibited ADP- and collagen-induced human platelet aggregation with IC50 of 123 and 135 nM, respectively. We also investigated the effect of jerdonatin on the binding of B6D2F1 hybrid mice spermatozoa to mice zona-free eggs and their subsequent fusion. Jerdonatin significantly inhibited sperm-egg binding in a concentration-dependent manner, but had no effect on the fusion of sperm-egg. These results indicate that integrins on the egg play a role in mammalian fertilization.  相似文献   

8.
ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  相似文献   

9.
NMR solution structure of the non-RGD disintegrin obtustatin   总被引:2,自引:0,他引:2  
The solution structure of obtustatin, a novel non-RGD disintegrin of 41 residues isolated from Vipera lebetina obtusa venom, and a potent and selective inhibitor of the adhesion of integrin alpha(1)beta(1) to collagen IV, has been determined by two-dimensional nuclear magnetic resonance. Almost the whole set of chemical shifts for 1H, 13C and 15N were assigned at natural abundance from 2D homonuclear and heteronuclear 500 MHz, 600 MHz and 800 MHz spectra at pH 3.0 recorded at 298 K and 303 K. Final structural constraints consisted of 302 non-redundant NOE (95 long-range, 60 medium, 91 sequential and 56 intra-residue), four disulfide bond distances, five chi1 dihedral angles and four hydrogen bonds. The 20 conformers with lowest total energy had no NOE violations greater than 0.35A or dihedral angle violations greater than 12 degrees. The average root-mean-square deviation (RMSD) for backbone atoms of all residues among the 20 conformers was 1.1A and 0.6A for the 29 best-defined residues. Obtustatin lacks any secondary structure. Compared to all known disintegrin structures in which the RGD motif is located at the apex of an 11 residue hairpin loop, the active KTS tripeptide of obtustatin is oriented towards a side of its nine residue integrin-binding loop. The C-terminal tail is near to the active loop, and these two structural elements display the largest atomic displacements due to local conformational disorder. Double cross-peaks for W20, Y28 and H27 in the aromatic region of TOCSY spectra, local RMSD values for these residues, and positive cross-peaks in a ROESY spectrum (600 MHz, 100 ms mixing time), suggest that these residues act as a hinge allowing for the overall flexibility of the entire integrin-binding loop. These distinct structural features, along with its different electrostatic surface potential in relation to other known disintegrins, may confer to obtustatin its reported alpha(1)beta(1) integrin inhibitory selectivity.  相似文献   

10.
Hemorrhagic snake venom induces apoptosis in vascular endothelial cells (VEC). In previous reports, we described the purification and cDNA cloning from Crotalus atrox of a vascular apoptosis-inducing protein (VAP1) that specifically induces apoptosis in vascular endothelial cells. We report here the purification and cDNA cloning of another vascular apoptosis-inducing protein, HV1, from crude venom of Trimeresurus flavoviridis. The protein, namely HV1, was purified as an inducer of apoptosis in cultured vascular endothelial cells. HV1 was a homodimeric protein with a molecular mass of 110 kDa. HV1 cDNA encoded a protein with 612 amino-acid residues. The amino-acid sequence predicted from the cDNA was highly homologous to VAP1. The amino-acid sequence of HV1 indicated that HV1 belongs to the metalloprotease/disintegrin family, and that it is a multidomain polypeptide with a proprotein domain, a metalloprotease domain, a disintegrin-like domain and a cysteine-rich domain. In the disintegrin-like domain, the sequence DECD, replaces the RGD sequence that has frequently been found in such domains. This replacement also occurs in VAP1. Our results indicate HV1 as the first identified homolog of VAP1.  相似文献   

11.
Disintegrins represent a group of cysteine-rich peptides occurring in Crotalidae and Viperidae snake venoms, and are potent antagonists of several integrin receptors. A novel disintegrin, obtustatin, was isolated from the venom of the Vipera lebetina obtusa viper, and represents the first potent and selective inhibitor of the binding of integrin alpha(1)beta(1) to collagen IV. The primary structure of obtustatin contains 41 amino acids and is the shortest disintegrin described to date. Obtustatin shares the pattern of cysteines of other short disintegrins. However, in contrast to known short disintegrins, the integrin-binding loop of obtustatin is two residues shorter and does not express the classical RGD sequence. Using synthetic peptides, a KTS motif was identified as the integrin-binding sequence. A three-dimensional model of obtustatin, built by homology-modeling structure calculations using different templates and alignments, strongly indicates that the novel KTS motif may reside at the tip of a flexible loop.  相似文献   

12.
ADAMs (a disintegrin and metalloproteases) are members of the metzincin superfamily of metalloproteases. Among integrins binding to disintegrin domains of ADAMs are alpha(9)beta(1) and alpha(v)beta(3), and they bind in an RGD-independent and an RGD-dependent manner, respectively. Human ADAM15 is the only ADAM with the RGD motif in the disintegrin domain. Thus, both integrin alpha(9)beta(1) and alpha(v)beta(3) recognize the ADAM15 disintegrin domain. We determined how these integrins recognize the ADAM15 disintegrin domain by mutational analysis. We found that the Arg(481) and the Asp-Leu-Pro-Glu-Phe residues (residues 488-492) were critical for alpha(9)beta(1) binding, but the RGD motif (residues 484-486) was not. In contrast, the RGD motif was critical for alpha(v)beta(3) binding, but the other residues flanking the RGD motif were not. As the RX(6)DLPEF alpha(9)beta(1) recognition motif (residues 481-492) is conserved among ADAMs, except for ADAM10 and 17, we hypothesized that alpha(9)beta(1) may recognize disintegrin domains in all ADAMs except ADAM10 and 17. Indeed we found that alpha(9)beta(1) bound avidly to the disintegrin domains of ADAM1, 2, 3, and 9 but not to the disintegrin domains of ADAM10 and 17. As several ADAMs have been implicated in sperm-oocyte interaction, we tested whether the functional classification of ADAMs, based on specificity for integrin alpha(9)beta(1), applies to sperm-egg binding. We found that the ADAM2 and 15 disintegrin domains bound to oocytes, but the ADAM17 disintegrin domain did not. Furthermore, the ADAM2 and 15 disintegrin domains effectively blocked binding of sperm to oocytes, but the ADAM17 disintegrin domain did not. These results suggest that oocytes and alpha(9)beta(1) have similar binding specificities for ADAMs and that alpha(9)beta(1), or a receptor with similar specificity, may be involved in sperm-egg interaction during fertilization. As alpha(9)beta(1) is a receptor for many ADAM disintegrins and alpha(9)beta(1) and ADAMs are widely expressed, alpha(9)beta(1)-ADAM interaction may be of a broad biological importance.  相似文献   

13.
The amino acid sequence of the hemorrhagic toxin, bilitoxin-1, isolated from the venom of Agkistrodon bilineatus was determined by the Edman sequencing procedure of peptides derived from digests utilizing cyanogen bromide, clostripain, lysyl endopeptidase, and Staphylococcus aureus V8 protease. A molecular mass of 80,000 Da was observed in the nonreduced state and 48,000 Da was observed in the reduced state, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Each subunit consists of 291 amino acid residues and has a calculated molecular mass of 32,276 Da. The toxin contains fucose, galactosamine, glucosamine, galactose, mannose, and N-acetylneuraminic acid and three N-linked glycosylation consensus sites. Hydrazinolysis and ESI mass spectrometry revealed that asparagine was the carboxyl-terminal amino acid. The disintegrin-like domain of bilitoxin-1 lacks the RGD cell-binding sequence, which is substituted by the MGD sequence. Under certain conditions, the disintegrin domain is autoproteolytically processed from the native protein. Studies with the bilitoxin disintegrin demonstrated that it lacks platelet aggregation inhibitory activity, probably reflecting the substitution of RGD by MGD. The hemorrhagic activity of the asialobilitoxin-1 was only 25% of bilitoxin-1, while proteolytic activity was unaffected. The three-dimensional structure of this toxin was modeled and was shown to likely possess a structure similar to that of adamalysin II (Gomis-Rüth et al., EMBO J. 12, 151-157 (1993)) and the disintegrin kistrin (Adler et al., Biochemistry 32, 282-289 (1993)). In summary, here we report the first primary structure of a dimeric, P-II snake venom metalloproteinase and the biological role of bilitoxin-1 glycosylation and the disintegrin domain.  相似文献   

14.
15.
PII-disintegrins, cysteine-rich polypeptides broadly distributed in the venoms of geographically diverse species of vipers and rattlesnakes, antagonize the adhesive functions of beta(1) and beta(3) integrin receptors. PII-disintegrins evolved in Viperidae by neofunctionalization of disintegrin-like domains of duplicated PIII-snake venom hemorrhagic metalloproteinase (SVMP) genes recruited into the venom proteome before the radiation of the advanced snakes. Minimization of the gene (loss of introns and coding regions) and the protein structures (successive loss of disulfide bonds) underpins the postduplication divergence of disintegrins. However, little is known about the underlying genetic mechanisms that have generated the structural and functional diversity among disintegrins. Phylogenetic inference and maximum likelihood-based codon substitution approaches were used to analyze the evolution of the disintegrin family. The topology of the phylogenetic tree does not parallel that of the species tree. This incongruence is consistent with that expected for a multigene family undergoing a birth-and-death process in which the appearance and disappearance of loci are being driven by selection. Cysteine and buried residues appear to be under strong purifying selection due to their role in maintaining the active conformation of disintegrins. Divergence of disintegrins is strongly influenced by positive Darwinian selection causing accelerated rate of substitution in a substantial proportion of surface-exposed disintegrin residues. Global and lineage-specific sites evolving under diversifying selection were identified. Several sites are located within the integrin-binding loop and the C-terminal tail, two regions that form a conformational functional epitope. Arginine-glycine-aspartic acid (RGD) was inferred to represent the ancestral integrin-recognition motif, which emerged from the subgroup of PIII-SVMPs bearing the RDECD sequence. The most parsimonious nucleotide substitution model required for the emergence of all known disintegrin's integrin inhibitory motifs from an ancestral RGD sequence involves a minimum of three mutations. The adaptive advantage of the emergence of motifs targeting beta(1) integrins and the role of positively selected sites located within nonfunctional disintegrin regions appear to be difficult to rationalize in the context of a predator-prey arms race. Perhaps, this represents a consequence of the neofunctionalization potential of the disintegrin domain, a feature that may underlie its recruitment into the venom proteome followed by its successful transformation into a toxin.  相似文献   

16.
The crystal structure of simian immunodeficiency virus (SIV) integrase that contains in a single polypeptide the core and the C-terminal deoxyoligonucleotide binding domain has been determined at 3 A resolution with an R-value of 0.203 in the space group P2(1)2(1)2(1). Four integrase core domains and one C-terminal domain are found to be well defined in the asymmetric unit. The segment extending from residues 114 to 121 assumes the same position as seen in the integrase core domain of avian sarcoma virus as well as human immunodeficiency virus type-1 (HIV-1) crystallized in the absence of sodium cacodylate. The flexible loop in the active site, composed of residues 141-151, remains incompletely defined, but the location of the essential Glu152 residue is unambiguous. The residues from 210-218 that link the core and C-terminal domains can be traced as an extension from the core with a short gap at residues 214-215. The C(alpha) folding of the C-terminal domain is similar to the solution structure of this domain from HIV-1 integrase. However, the dimeric form seen in the NMR structure cannot exist as related by the non-crystallographic symmetry in the SIV integrase crystal. The two flexible loops of the C-terminal domain, residues 228-236 and residues 244-249, are much better fixed in the crystal structure than in the NMR structure with the former in the immediate vicinity of the flexible loop of the core domain. The interface between the two domains encompasses a solvent-exclusion area of 1500 A(2). Residues from both domains purportedly involved in DNA binding are narrowly distributed on the same face of the molecule. They include Asp64, Asp116, Glu152 and Lys159 from the core and Arg231, Leu234, Arg262, Arg263 and Lys264 from the C-terminal domain. A model for DNA binding is proposed to bridge the two domains by tethering the 228-236 loop of the C-terminal domain and the flexible loop of the core.  相似文献   

17.
A solution structure for the complete zymogen form of human coagulation protein C is modeled. The initial core structure is based on the x-ray crystallographic structure of the gamma-carboxyglutamic acid (Gla)-domainless activated form. The Gla domain (residues 1-48) is modeled from the x-ray crystal coordinates of the factor VII(a)/tissue factor complex and oriented with the epidermal growth factor-1 domain to yield an initial orientation consistent with the x-ray crystal structure of porcine factor IX(a). The missing C-terminal residues in the light chain (residues 147-157) and the activation peptide residues 158-169 were introduced using homology modeling so that the activation peptide residues directly interact with the residues in the calcium binding loop. Molecular dynamics simulations (Amber-particle-mesh-Ewald) are used to obtain the complete calcium-complexed solution structure. The individual domain structures of protein C in solution are largely unaffected by solvation, whereas the Gla-epidermal growth factor-1 orientation evolves to a form different from both factors VII(a) and IX(a). The solution structure of the zymogen protein C is compared with the crystal structures of the existing zymogen serine proteases: chymotrypsinogen, proproteinase, and prethrombin-2. Calculated electrostatic potential surfaces support the involvement of the serine protease calcium ion binding loop in providing a suitable electrostatic environment around the scissile bond for II(a)/thrombomodulin interaction.  相似文献   

18.
19.
Contortrostatin is a unique dimeric disintegrin isolated from southern copperhead snake venom. Through antagonism of integrins alphaIIbbeta3, alpha5beta1, alphavbeta3, and alphavbeta5, contortrostatin inhibits platelet aggregation and disrupts cancer cell adhesion and invasion. We cloned cDNA from a library made from the venom gland cells of Agkistrodon contortrix contortrix using polymerase chain reaction. We found that the contortrostatin gene is part of a precursor composed of proprotein, metalloproteinase, and disintegrin domains. The precursor cDNA is 2027 bp with a 1449-bp open reading frame. The disintegrin domain is 195 bp encoding 65 amino acids. Like other members of the disintegrin family, each subunit of contortrostatin has an RGD site, and the cysteine alignment is conserved. The disintegrin domain of the cDNA has been expressed in a eukaryotic expression system as a homodimeric fusion protein with an immunoglobulin. The recombinant protein is recognized by an antiserum against native contortrostatin in Western blot. Both the native and recombinant proteins bind to integrins alphavbeta3 and alphavbeta5. Like native contortrostatin, the recombinant fusion protein inhibits platelet aggregation, blocks cancer cell adhesion to fibronectin and vitronectin, and prevents invasion of cancer cells through a Matrigel barrier. The success of functional expression not only validates the cDNA cloning of this disintegrin, but also provides adequate material for functional studies of contortrostatin.  相似文献   

20.
The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号