首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until now, identification of components of the flagellar protein export apparatus has been indirect. We have now identified these components directly by establishing whether mutants defective in putative export components could translocate export substrates across the cytoplasmic membrane into the periplasmic space. Hook-type proteins could be exported to the periplasm of rod mutants, indicating that rod protein export does not have to precede hook-type protein export and therefore that both types of proteins belong to a single export class, the rod/hook-type class, which is distinct from the filament-type class. Hook-capping protein (FlgD) and hook protein (FlgE) required FlhA, FlhB, FliH, FliI, FliO, FliP, FliQ, and FliR for their export to the periplasm. In the case of flagellin as an export substrate, because of the phenomenon of hook-to-filament switching of export specificity, it was necessary to use temperature-sensitive mutants and establish whether flagellin could be exported to the cell exterior following a shift from the permissive to the restrictive temperature. Again, FlhA, FlhB, FliH, FliI, and FliO were required for its export. No suitable temperature-sensitive fliQ or fliR mutants were available. FliP appeared not to be required for flagellin export, but we suspect that the temperature-sensitive FliP protein continued to function at the restrictive temperature if incorporated at the permissive temperature. Thus, we conclude that these eight proteins are general components of the flagellar export pathway. FliJ was necessary for export of hook-type proteins (FlgD and FlgE); we were unable to test whether FliJ is needed for export of filament-type proteins. We suspect that FliJ may be a cytoplasmic chaperone for the hook-type proteins and possibly also for FliE and the rod proteins. FlgJ was not required for the export of the hook-type proteins; again, because of lack of a suitable temperature-sensitive mutant, we were unable to test whether it was required for export of filament-type proteins. Finally, it was established that there is an interaction between the processes of outer ring assembly and of penetration of the outer membrane by the rod and nascent hook, the latter process being of course necessary for passage of export substrates into the external medium. During the brief transition stage from completion of rod assembly and initiation of hook assembly, the L ring and perhaps the capping protein FlgD can be regarded as bona fide export components, with the L ring being in a formal sense the equivalent of the outer membrane secretin structure of type III virulence factor export systems.  相似文献   

2.
We have examined the cytoplasmic components (FliH, FliI and FliJ) of the type III flagellar protein export apparatus, plus the cytoplasmic domains (FlhAC and FlhBC) of two of its six membrane components. FliH, FlhAC and FliJ, when overproduced, caused inhibition of motility of wild-type cells and inhibition of the export of substrates such as the hook protein FlgE. Co-overproduction of FliH and FliI substantially relieved the inhibition caused by FliH, suggesting that it is excess free FliH that is inhibitory and that FliH and FliI form a complex. We purified His-FLAG-tagged versions of: (i) export components FliH, FliI, FliJ, FlhAC and FlhBC; (ii) rod/hook-type export substrates FlgB (rod protein), FlgE (hook protein), FlgD (hook capping protein) and FliE (basal body protein); and (iii) filament-type export substrates FlgK and FlgL (hook-filament junction proteins) and FliC (flagellin). We tested for protein-protein interactions by affinity blotting. In many cases, a given protein interacted with more than one other component, indicating that there are likely to be multiple dynamic interactions or interactions that involve more than two components. Interactions of FlhBC with rod/hook-type substrates were strong, whereas those with filament-type substrates were very weak; this may reflect the role of FlhB in substrate specificity switching. We propose a model for the flagellar export apparatus in which FlhA and FlhB and the other four integral membrane proteins of the apparatus form a complex at the base of the flagellar motor. A soluble complex of at least three proteins (FliH, FliI and FliJ) bind the protein to be exported and then interact with the complex at the motor to deliver the protein, which is then exported in an ATP-dependent process mediated by FliI.  相似文献   

3.
We have investigated the properties of the cytoplasmic domain (FlhB(C)) of the 383-amino-acid Salmonella membrane protein FlhB, a component of the type III flagellar export apparatus. FlhB, along with the hook-length control protein FliK, mediates the switching of export specificity from rod- and hook-type substrates to filament-type substrates during flagellar morphogenesis. Wild-type FlhB(C) was unstable (half-life, ca. 5 min), being specifically cleaved at Pro-270 into two polypeptides, FlhB(CN) and FlhB(CC), which retained the ability to interact with each other after cleavage. Full-length wild-type FlhB was also subject to cleavage. Coproduction of the cleavage products, FlhB(delta CC) (i.e., the N-terminal transmembrane domain FlhB(TM) plus FlhB(CN)) and FlhB(CC), resulted in restoration of both motility and flagellar protein export to an flhB mutant host, indicating that the two polypeptides were capable of productive association. Mutant FlhB proteins that can undergo switching of substrate specificity even in the absence of FliK were much more resistant to cleavage (half-lives, 20 to 60 min). The cleavage products of wild-type FlhB(C), existing as a FlhB(CN)-FlhB(CC) complex on an affinity blot membrane, bound the rod- and hook-type substrate FlgD more strongly than the filament-type substrate FliC. In contrast, the intact form of FlhB(C) (mutant or wild type) or the FlhB(CC) polypeptide alone bound FlgD and FliC to about the same extent. FlhB(CN) by itself did not bind substrates appreciably. We propose that FlhB(C) has two substrate specificity states and that a conformational change, mediated by the interaction between FlhB(CN) and FlhB(CC), is responsible for the specificity switching process. FliK itself is an export substrate; its binding properties for FlhB(C) resemble those of FlgD and do not provide any evidence for a physical interaction beyond that of the export process.  相似文献   

4.
The bacterial flagellum is a predominantly cell-external super-macromolecular construction whose structural components are exported by a flagellum-specific export apparatus. One of the export apparatus proteins, FlhB, regulates the substrate specificity of the entire apparatus; i.e. it has a role in the ordered export of the two main groups of flagellar structural proteins such that the cell-proximal components (rod-/hook-type proteins) are exported before the cell-distal components (filament-type proteins). The controlled switch between these two export states is believed to be mediated by conformational changes in the structure of the C-terminal cytoplasmic domain of FlhB (FlhB(C)), which is consistently and specifically cleaved into two subdomains (FlhB(CN) and FlhB(CC)) that remain tightly associated with each other. The cleavage event has been shown to be physiologically significant for the switch. In this study, the mechanism of FlhB cleavage has been more directly analyzed. We demonstrate that cleavage occurs in a heterologous host, Saccharomyces cerevisiae, deficient in vacuolar proteinases A and B. In addition, we find that cleavage of a slow-cleaving variant, FlhB(C)(P270A), is stimulated in vitro at alkaline pH. We also show by analytical gel-filtration chromatography and analytical ultracentrifugation experiments that both FlhB(C) and FlhB(C)(P270A) are monomeric in solution, and therefore self-proteolysis is unlikely. Finally, we provide evidence via peptide analysis and FlhB cleavage variants that the tertiary structure of FlhB plays a significant role in cleavage. Based on these results, we propose that FlhB cleavage is an autocatalytic process.  相似文献   

5.
Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.  相似文献   

6.
We isolated and characterized spontaneous mutants with defects in the 147-amino-acid Salmonella protein FliJ, which is a cytoplasmic component of the type III flagellar export apparatus. These mutants, including ones with null mutations, have the ability to form swarms on motility agar plates after prolonged incubation at 30 degrees C; i.e., they display a leaky motile phenotype. One mutant, SJW277, which formed significantly bigger swarms than the others, encoded only the N-terminal 73 amino acids of FliJ, one-half of the protein. At 30 degrees C, overproduction of this mutant protein improved, to wild-type levels, both motility and the ability to export both rod/hook-type (FlgD; hook capping protein) and filament-type (FliC; flagellin) substrates. At 42 degrees C, however, export was inhibited, indicating that the mutant FliJ protein was temperature sensitive. Taking advantage of this, we performed temperature upshift experiments, which demonstrated that FliJ is directly required for the export of FliC. Co-overproduction of FliJ and either of two export substrates, FliE or FlgG, hindered their aggregation in the cytoplasm. We conclude that FliJ is a general component of the flagellar export apparatus and has a chaperone-like activity for both rod/hook-type and filament-type substrates.  相似文献   

7.
Salmonella hook-length control protein FliK, which consists of 405 amino acid residues, switches substrate specificity of the type III flagellar protein export apparatus from rod/ hook-type to filament-type by causing a conformational change in the cytoplasmic domain of FlhB (FlhB(C)) upon completion of the hook assembly. An N-terminal region of FliK contains an export signal, and a highly conserved C-terminal region consisting of amino acid residues 265-405 (FliK((265-405))) is directly involved in the switching of FlhB(C). Here, we have investigated the structural properties of FliK. Gel filtration chromatography, multi-angle light scattering and analytical ultracentrifugation showed that FliK is monomeric in solution and has an elongated shape. Limited proteolysis showed that FliK consists of two domains, the N-terminal (FliK(N)) and C-terminal domains (FliK(C)), and that the first 203 and the last 35 amino acid residues are partially unfolded and subjected to proteolysis. Both FliK(N) and FliK(C) are more globular than full-length FliK, suggesting that these domains are connected in tandem. Overproduced His-FliK((199-405)) failed to switch export specificity of the export apparatus. Affinity blotting revealed that FlhB(C) binds to FliK and FliK((1-147)), but not to FliK((265-405)). Based on these results, we propose that FliK(N) within the central channel of the hook-basal body during the export of FliK is the sensor and transmitter of hook completion information and that the binding interaction of FliK(C) to FlhB(C) is structurally regulated by FliK(N) so as to occur only when the hook has reached a preset length. The conformational flexibility of FliK(C) may play a role in interfering with switching at an inappropriate point of flagellar assembly.  相似文献   

8.
The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly‐conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68‐amino acid FHIPEP region. Fifty‐two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short‐stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un‐polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook‐cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook‐filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook‐length control protein FliK and facilitated growth of full‐length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.  相似文献   

9.
Salmonella flagellar hook length is controlled at the level of export substrate specificity of the FlhB component of the type III flagellar export apparatus. FliK is believed to be the hook length sensor and interacts with FlhB to change its export specificity upon hook completion. To find properties of FliK expected of such a molecular ruler, we assayed binding of FliK to the hook and found that the N-terminal domain of FliK (FliK(N)) bound to the hook-capping protein FlgD with high affinity and to the hook protein FlgE with low affinity. To investigate a possible role of FlgE in hook length control, flgE mutants with partially impaired motility were isolated and analyzed. Eight flgE mutants obtained all formed flagellar filaments. The mutants produced significantly shorter hooks while the hook-type substrates such as FlgE, FliK and FlgD were secreted in large amounts, suggesting defective hook assembly with the mutant FlgE proteins. Upon overexpression, mutant FlgEs produced hooks of normal length and wild-type FlgE produced longer hooks. These results suggest that hook length is dependent on the hook polymerization rate and that the start of hook polymerization initiates a "time countdown" for the specificity switch to occur or for significant slow down of rod/hook-type export after hook length reaches around 55 nm for later infrequent FliK(C)-FlhB(C) interaction. We propose that FliK(N) acts as a flexible tape measure, but that hook length is also dependent on the hook elongation rate and a switch timing mechanism.  相似文献   

10.
In wild-type Salmonella, the length of the flagellar hook, a structure consisting of subunits of the hook protein FlgE, is fairly tightly controlled at approximately 55 nm. Because fliK mutants produce abnormally elongated hook structures that lack the filament structure, FliK appears to be involved in both the termination of hook elongation and the initiation of filament formation. FliK, a soluble protein, is believed to function together with a membrane protein, FlhB, of the export apparatus to mediate the switching of export substrate specificity (from hook protein to flagellin) upon completion of hook assembly. We have examined the location of FliK during flagellar morphogenesis. FliK was found in the culture supernatants from the wild-type strain and from flgD (hook capping protein), flgE (hook protein) and flgK (hook-filament junction protein) mutants, but not in that from a flgB (rod protein) mutant. The amount of FliK in the culture supernatant from the flgE mutant was much higher than in that from the flgK mutant, indicating that FliK is most efficiently exported prior to the completion of hook assembly. Export was impaired by deletions within the N-terminal region of FliK, but not by C-terminal truncations. A decrease in the level of exported FliK resulted in elongated hook structures, sometimes with filaments attached. Our results suggest that the export of FliK during hook assembly is important for hook-length control and the switching of export substrate specificity.  相似文献   

11.
The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates.  相似文献   

12.
The length of flagellar hooks isolated from wild-type and mutant cells with various hook lengths were measured on electron micrographs. The length of the wild-type hook showed a narrow distribution with a peak (+/- standard deviation) at 55.0 +/- 5.9 nm, whereas fliK mutants (so-called polyhook mutants) showed a broad distribution of hook lengths ranging from 40 to 900 nm, strongly indicating that FliK is involved in hook length determination. Among pseudorevertants isolated from such polyhook mutants, fliK intragenic suppressors gave rise to polyhook filaments. However, intergenic suppressors mapping to flhB also gave rise to hooks of abnormal length, albeit they were much shorter than polyhooks. Furthermore, double mutations of flhB and flgK (the structural gene for hook-associated protein 1; HAP1) resulted in polyhooks, suggesting another way in which hook length can be affected. The roles of FliK, FlhB, and HAP1 in hook length determination are discussed.  相似文献   

13.
Role of the flaR gene in flagellar hook formation in Salmonella spp.   总被引:14,自引:11,他引:3       下载免费PDF全文
Flagellar filaments were reconstituted by polymerization with exogenously supplied flagellin monomers at the tips of normal hooks on Salmonella cells which were missing the filaments because of mutations in either the flaL or flaU gene or the flagellin genes H1 and H2. Reconstitution did not occur at the tips of polyhooks of the flaR mutant cells. Thus, the absence of flagellar filaments in the flaR mutant cells was probably caused by the inability of the polyhooks to work as polymerization nuclei for flagellin. A Phf+ mutant which produced polyhooks with flagellar filaments was isolated from a flaR polyhook mutant. Genetic analysis of the Phf+ mutant showed that it carried an intracistronic suppressor mutation of the original flaR mutation. This result indicated that the flaR gene regulates hook length and initiates flagellin formation.  相似文献   

14.
FliK–FlhB interaction switches export specificity of the bacterial flagellar protein export apparatus to stop hook protein export at an appropriate timing for hook length control. The hook structure is required for the productive FliK–FlhB interaction to flip the switch but it remains unknown how it works. Here, we characterize the role of FliK in the switching probability in the absence of the hook. When RflH/Flk was missing in the hook mutants, the switching occurred at a low probability. Overproduction of FliK significantly increased the switching probability although not at the wild-type level. An in-frame deletion of residues 129 through 159 of FliK weakened the interaction with the hook protein but not with the hook-capping protein, producing polyhooks with filaments attached. We suggest that temporary association of FliK with the inner surface of the hook during FliK secretion results in a pause in the secretion process to allow the C-terminal switch domain of FliK to be positioned and appropriately oriented near FlhB for catalysing the switch and that RflH/Flk interferes with premature switch by preventing access of cytoplasmic FliK to FlhB and even that of FliK during its secretion until hook length reaches 55 nm; only then FliKC passes the RflH/Flk block.  相似文献   

15.
The switch in export specificity of the type III flagellar protein export apparatus from rod/hook type to filament type is believed to occur upon completion of hook assembly by way of an interaction of the type III secretion substrate specificity switch (T3S4) domain of the hook-length control protein FliK, with the integral membrane export apparatus component FlhB. The T3S4 domain of FliK (FliKT3S4) consisting of amino acid residues 265-405 has an unstable and flexible conformation in its last 35 residues (FliKCT). To investigate the role of FliKT3S4 in substrate specificity switching, we studied the effect of deletions and point mutations within this domain and characterized suppressor mutations. Deletions of ten amino acid residues within the region of residues 301-350 and five amino acids of residues 401-405 abolished switching of export specificity. Site directed mutagenesis showed that highly conserved residues, Val302, Ile304, Leu335, Val401 and Ala405, are essential, and that the five C terminal residues (401-405) are restricted in conformation for the switching process. Suppressor mutant analysis of the fliK(S319Y) mutant, which produces extended hooks with filaments attached due to delayed switching, suggested that FliKT3S4 interacts with the C terminal half of the cytoplasmic domain of FlhB (FlhBC). We propose a two step binding model of FliKT3S4 and FlhBC, in which residues 301-350 of FliK bind to FlhBC upon hook assembly completion at about 55 nm, and then unfolded FliKCT binds to FlhBC to trigger the switch in substrate specificity.  相似文献   

16.
Mutations in the fliK gene of Salmonella typhimurium commonly cause failure to terminate hook assembly and initiate filament assembly (polyhook phenotype). Polyhook mutants give rise to pseudorevertants which are still defective in hook termination but have recovered the ability to assemble filament (polyhook-filament phenotype). The polyhook mutations have been found to be either frameshift or nonsense, resulting in truncation of the C terminus of FliK. Intragenic suppressors of frameshift mutations were found to be ones that restored the original frame (and therefore the C-terminal sequence), but in most cases with substantial loss of natural sequence and sometimes the introduction of artificial sequence; in no cases did intragenic suppression occur when significant disruption remained within the C-terminal region. By use of a novel PCR protocol, in-frame deletions affecting the N-terminal and central regions of FliK were constructed and the resulting phenotypes were examined. Small deletions resulted in almost normal hook length control and almost wild-type swarming. Larger deletions resulted in loss of control of hook length and poor swarming. The largest deletions severely affected filament assembly as well as hook length control. Extragenic suppressors map to an unlinked gene, flhB, which encodes an integral membrane protein (T. Hirano, S. Yamaguchi, K. Oosawa, and S.-I. Aizawa, J. Bacteriol. 176:5439-5449, 1994; K. Kutsukake, T. Minamino, and T. Yokoseki, J. Bacteriol. 176:7625-7629, 1994). They were either point mutations in the C-terminal cytoplasmic region of FlhB or frameshift or nonsense mutations close to the C terminus. The processes of hook and filament assembly and the roles of FliK and FlhB in these processes are discussed in light of these and other available data. We suggest that FliK measures hook length and, at the appropriate point, sends a signal to FlhB to switch the substrate specificity of export from hook protein to late proteins such as flagellin.  相似文献   

17.
The length of the flagellar hook is regulated; it is 55 +/- 6 nm long in Salmonella. Five genes involved in hook-length regulation are fliK, flhB, fliG, fliM and fliN. The last four genes encode structural components of the protein export apparatus in the flagellar base, whereas FliK is soluble and secreted during flagellar assembly. The role of FliK, however, remains ambiguous. We constructed two kinds of FliK variants: N-terminally truncated FliK protein and FliK N-terminally fused with cyan fluorescent protein (CFP-FliK). Both N-terminally truncated FliK missing the first 99 amino acids (aa) and CFP-FliK fusion variants partially complemented a fliK null (polyhook) mutant to produce cells with filaments, allowing cells to swim; the hooks, however, were not normal but were polyhooks. When the N-terminally defective FliK variants were expressed at high levels, the average polyhook length was shortened coming close to the length of the wild-type hook, independently of the sizes of the FliK variants. These FliK variants were not secreted. CFP-FliK fusion proteins were observed to homogeneously distribute in the cytoplasm. We conclude that FliK does not need to be exported to control hook length and is unlikely to be a ruler; instead, we conclude that FliK controls hook length by the timely switching of secretion modes of the flagellar type III secretion system by the FliK C-terminal domain, and that the N-terminal region is dispensable for hook length control.  相似文献   

18.
Assembly of the long helical filament of the bacterial flagellum requires polymerisation of ca 20,000 flagellin (FliC) monomeric subunits into the growing structure extending from the cell surface. Here, we show that export of Salmonella flagellin is facilitated specifically by a cytosolic protein, FliS, and that FliS binds to the FliC C-terminal helical domain, which contributes to stabilisation of flagellin subunit interactions during polymerisation. Stable complexes of FliS with flagellin were assembled efficiently in vitro, apparently by FliS homodimers binding to FliC monomers. The data suggest that FliS acts as a substrate-specific chaperone, preventing premature interaction of newly synthesised flagellin subunits in the cytosol. Compatible with this view, FliS was able to prevent in vitro polymerisation of FliC into filaments.  相似文献   

19.
YscU is an essential component of the export apparatus of the Yersinia injectisome. It consists of an N-terminal transmembrane domain and a long cytoplasmic C-terminal domain, which undergoes auto-cleavage at a NPTH site. Substitutions N263A and P264A prevented cleavage of YscU and abolished export of LcrV, YopB and YopD but not of Yop effectors. As a consequence, yscU(N263A) mutant bacteria made needles without the LcrV tip complex and they could not form translocation pores. The graft of the export signal of the effector YopE, at the N-terminus of LcrV, restored LcrV export and assembly of the tip complex. Thus, YscU cleavage is required to acquire the conformation allowing recognition of translocators, which represent an individual category of substrates in the hierarchy of export. In addition, yscU(N263A) mutant bacteria exported reduced amounts of the YscP ruler and made longer needles. Increasing YscP export resulted in needles with normal size, depending on the length of the ruler. Hence, the effect of the yscU(N263A) mutation on needle length was the consequence of a reduced YscP export.  相似文献   

20.
Salmonella FliR and FlhB are membrane proteins necessary for flagellar export. In Clostridium a fliR-flhB fusion gene exists. We constructed a similar Salmonella fusion gene which is able to complement fliR, flhB, and fliR flhB null strains. Western blotting revealed that the FliR-FlhB fusion protein retains the FlhB protein's cleavage properties. We conclude that the FliR and FlhB proteins are physically associated in the wild-type Salmonella basal body, probably in a 1:1 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号