首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cytochrome c haem ligand, methionine-80, was photo-oxidized to methionine sulphoxide and the subsequent changes in redox properties and ligand binding were monitored kinetically. Isoelectric focusing of the product showed the presence of a single oxidized species, capable of binding CO when reduced. The binding of CO to the reduced protein was followed in stopped-flow experiments, which revealed the presence of two binding processes, at neutral pH, with rate constants of K+1 = 3.4 X 10(3)M-1-S-1 and k+2 = 5.80 X 10(2)M-1-S-1. When CO was photolytically dissociated from the reduced protein two recombination processes were observed with rates almost identical with those observed in the stopped-flow experiments (k+1 = 3.3 X 10(3)M-1-S-1 and k+2 = 6.0 X 10(2)M-1-S-1). These findings provide evidence of two reduced forms of the protein. The reduction of [methionine sulphoxide]cytochrome c by Cr2+ at neutral pH in stopped-flow experiments showed the presence of a single second-order reduction process (k = 7.2 X 10(3)M-1-S-1, activation energy = 44kJ/mol) and one first-order process. This protein was compared with some other chemically modified cytochromes.  相似文献   

2.
Hydrogen-limited chemostat cultures of Methanobrevibacter arboriphilus A2 were carried out. The available electron balance and carbon balance in M. arboriphilus A2 and other methanogenic strains grown on various substrates were well satisfied. This indicates that no extracellular organic products were formed during methanogenic growth. The molar growth yields for methane (Y(X/CH(4) )) were calculated as 1.06-1.42 g cell/mol CH(4) at dilution rate (0.21-0.43 day(-1)). The smaller Y(X/CH(4) ) of M. arboriphilus A2 compared with that of the other methanogenic strains was probably owing to the low growth rate of M. arboriphilus A2. The low value of Y(X/CH(4) ) may be favorable for methane fermentation because less sludge accumulation is expected. The efficiency of free energy transduction to ATP during methane formation from H(2) + CO(2) was 12-17% at the dilution rate (0.21-0.43 day(-1)) assuming that Y(ATP) was 6.5 g/mol and the free energy change of CO(2) reduction to methane with H(2) was -62.8 kJ/mol under physiological conditions.  相似文献   

3.
J Everse  N Kujundzic 《Biochemistry》1979,18(12):2668-2673
A detailed investigation of the reduction of cytochrome c by glutathione has shown that the reaction proceeds through several steps. A rapid combination of the reducing agent with the cytochrome leads to the formation of a glutathione-cytochrome intermediate in which the glutathione most likely interacts with the edge of the heme moiety. The electron transfer takes place in a subsequent slower step. Since cytochrome c(III) exists in two conformational forms at neutral pH [Kujundzic, N., & Everse, J. (1978) Biochem. Biophys. Res. Commun. 82, 1211], the reduction of cytochrome c by glutathione may be represented by cyt c(III) + GS- reversible K1 cyt c(III) ... GS- reversible k1 products cyt c*(III) + GS- reversible K2 cyt c*(III) ... GS- reversible k2 products At 25 degrees C, pH 7.5, and an ionic strength of 1.0 (NaCl), k1 = 1.2 X 10(-3) S-1, k2 = 2.0 X 10(-3) S-1, k1 = 2.9 X 10(3) M-1, and K2 = 5.3 X 10(3) M-1. The reaction is catalyzed by trisulfides, and second-order rate constants of 4.55 X 10(3) and 7.14 X 10(3) M-1 S-1 were obtained for methyl trisulfide and cysteine trisulfide, respectively.  相似文献   

4.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

5.
1. The superoxide anion radical (O2-) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2- and ferrocytochrome c. 2. At 20 degrees C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4-10(6) M-1. S -1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2- and the form of cytochrome c which exists above pH approximately 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2- reacts with the form present below pH 7.45 with k = 1.4-10(6) M-1 - S-1, the form above pH 7.45 with k = 3.0- 10(5) M-1 - S-1, and the form present above pH 9.2 with k = 0. 3. The reaction has an activation energy of 20 kJ mol-1 and an enthalpy of activation at 25 degrees C of 18 kJ mol-1 both above and below pH 7.45. It is suggested that O2- may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2-6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5-10(5)-5-10(6) M-1 - S-1.  相似文献   

6.
The questions of whether the stoichiometry of the turnover of cytochrome f, and the time-course of its reduction subsequent to a light flash, are consistent with efficient function in noncyclic electron transport have been investigated. Measurements were made of the absorbance change at the 553-nm alpha-band maximum relative to a reference wavelength. In the dark cytochrome f is initially fully reduced, oxidized by a 0.3-s flash, and reduced again in the dark period after the flash. In the presence of gramicidin at 18 degrees C, the dark reduction was characterized by a half-time of 25-30 ms, stoichiometries of cytochrome f:chlorophyll and P700:chlorophyll of 1:670 and 1:640, respectively, and a short time delay. The time delay in the dark reduction of cytochrome f, which is expected for a component in an intermediate position in the chain, becomes more apparent in the presence of valinomycin and K+. Under these conditions the half-time for cytochrome f dark reduction is 130-150 ms, and the delay is approximately equal to 20 ms. The measured value for the activation energy of the dark reduction of cytochrome f (11 +/- 1 kcal/mol) is the same as that for noncyclic electron transport in steady-state light. A sigmoidal time-course for the reduction of cytochrome f has been calculated for a simple linear electron transport chain. The kinetics for reduction of cytochrome f predicted by the calculation, in the presence of valinomycin and K+, are in reasonably good agreement with the experimental data. There is an appreciable amount of data in the literature to document complex properties of cytochrome f after illumination with short flashes, and evidence for complexity in a light-minus-dark transition. The data presented here, obtained after a long flash that should establish steady-state conditions, either fulfill or are consistent with the basic criteria for efficient function of cytochrome f in noncyclic electron transport.  相似文献   

7.
We have addressed the question of whether the Na/K+-ATPase in the human erythrocyte is in a state of near-equilibrium by varying the extracellular ratio of Na+ and K+ and following the cytosolic phosphorylation potential by 31P-NMR and by combined enzymatic colorimetric measurements. There was no correlation at room temperature between the extracellular Na+/K+ ratio and the cytosolic phosphorylation potential measured either by NMR or alternative methods. The cytosolic phosphorylation potential measured by NMR was 4100 +/- 1300 (S.E.) M-1 at an extracellular K+ concentration of 5.9 mM (Na+/K+ ratio of 24.3) and 2800 +/- 700 (S.E.) M-1 at 75 mM extracellular K+ (Na+/K+ ratio of 0.99). The chemically determined phosphorylation potential was 6400 +/- 1200 (S.E.) and 5000 +/- 700 (S.E.) M-1 at 5.9 and 75 mM extracellular K+, respectively. Omission of Ca2+ from the buffer solutions did not affect the results. A consistent finding in this study was that the NMR-determined value of ATP was about 10-20% lower than the value determined enzymatically on perchloric acid extracts. The inorganic phosphate (Pi) was fully NMR visible.  相似文献   

8.
Described are further studies directed towards elucidating the mechanism of the nitric oxide reduction of the copper(II) model system, Cu(dmp)2(2+) (I, dmp=2,9-dimethyl-1,10-phenanthroline). The reaction of I with NO in methanol results in the formation of Cu(dmp)2+ (II) and methyl nitrite (CH3ONO), with a second order rate constant kNO=38.1 M-1 s-1 (298K). The activation parameters for this reaction in buffered aqueous medium were measured to be DeltaH(double dagger)=41.6 kJ/mol and DeltaS(double dagger)=-82.7 kJ/mol deg. The addition of azide ion (N3-) as a competing nucleophile results in a marked acceleration in the rate of the copper(II) reduction. Analysis of the kinetics for the NO reduction of the bulkier Cu(dpp)(2)2+ (IV, dpp=2,9-diphenyl-1,10-phenanthroline) and the stronger oxidant, Cu(NO2-dmp)2(2+) (V, NO2-dmp=5-nitro-2,9-dimethyl-1,10-phenanthroline), gave the second order rate constants kNO=21.2 and 29.3 M-1 s-1, respectively. These results argue against an outer sphere electron transfer pathway and support a mechanism where the first step involves the formation of a copper-nitrosyl (Cu(II)-NO or Cu(I)-NO+) adduct. This would be followed by the nucleophilic attack on the bound NO and the labilization of RONO to form the nitrite products and the cuprous complex.  相似文献   

9.
Pulse-generation of O2- by a flash was used to determine the reactivity of O2-, O2- was produced within 10 ms by a flash of light through the excitation of FMN in the presence of N,N,N',N'-tetramethylethylenediamine and oxygen. Kinetic analysis of cytochrome c reduction by O2- generated by flash yielded the reaction rate constant between cytochrome c and O2- and the spontaneous disproportionation rate constant of O2-. We applied it for superoxide dismutase assay using a linear relation between superoxide dismutase concentration and the apparent rate constant of cytochrome c reduction by O2-. The catalytic rate constant and activation energy at pH 7.3 of bovine liver Cu,Zn-superoxide dismutase were found to be 1.75 x 10(9) M-1 . s-1 at 25 degrees C and 26.9 kJ . M-1, respectively. The kinetics of O2- decay can be also monitored at 240 nm in this flash-photometric system and gave the spontaneous disproportionation rate constant of O2- and the catalytic rate constant of superoxide dismutase.  相似文献   

10.
The oxidation of reduced cytochrome c oxidase by hydrogen peroxide was investigated with stopped-flow methods. It was reported by us previously (A.C.F. Gorren, H. Dekker and R. Wever (1986) Biochim. Biophys. Acta 852, 81-92) that at low H2O2 concentrations cytochrome a is oxidised simultaneously with cytochrome a3, but that at higher H2O2 concentrations the oxidation of cytochrome a is slower than that of cytochrome a3. We now report that for high peroxide concentrations (10-45 mM) the oxidation rate of cytochrome a increased linearly with the concentration of H2O2 (k = 700 M-1.S-1). Upon extrapolation to zero H2O2 concentration an intercept with a value of 16 s-1 (at 20 degrees C and pH 7.4) was found. A reaction sequence is described to explain these results; according to this model the rate constant (16 S-1) at zero H2O2 concentration represents the true value of the rate of electron transfer from cytochrome a to cytochrome a3 when the a3-CuB site is oxidised and unligated. However, when a complex of hydrogen peroxide with oxidised cytochrome a3 is formed, this rate is strongly enhanced. The slope (700 M-1.S-1) would then represent the rate of cytochrome a3(3+)-H2O2 complex formation. From experiments in which the pH was varied, we conclude that the reaction of H2O2 with cytochrome a3(2+) is independent of pH, whereas the electron-transfer rate from cytochrome a to cytochrome a3 gradually decreases with increasing pH. From the temperature dependence we could calculate values of 23 kJ.mol-1 and 45 kJ.mol-1 for the activation energies of the oxidations by H2O2 of cytochrome a3(2+) and cytochrome a2+, respectively. The similarity of the values that were obtained for cytochrome a oxidation both with H2O2 and with O2 as the electron acceptor suggests that the reactions share the same mechanism. In 2H2O the reactions studied decreased in rate. For the reaction of 2H2O2 with reduced cytochrome a3 in 2H2O, a small effect was found (15% decrease in rate constant). However, the internal electron-transfer rate from cytochrome a to cytochrome a3 decreased by 50%, Our results suggest that the internal electron transfer is associated with proton translocation.  相似文献   

11.
The oxidation-reduction properties of free cytochrome b2 isolated by controlled proteolysis from flavocytochrome b2, i.e. the flavodehydrogenase-bound cytochrome b2, were investigated by using stopped-flow spectrophotometry. The rapid kinetics of the reduction of cytochrome b2 by flavocytochrome b2 in the presence of L-lactate are reported. The self-exchange rate constant between reduced cytochrome b2 bound to the flavodehydrogenase and free cytochrome b2 was determined to be 10(5) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. The specific electron-transfer reaction between reduced cytochrome b2 and cytochrome c was also studied, giving an apparent second-order rate constant of 10(7) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. This electron-exchange rate is slightly modulated by ionic strength, following the Debye-Hückel relationship with a charge factor Z1Z2 = -1.9. Comparison of these data with those for the reduction of cytochrome c by flavodehydrogenase-bound cytochrome b2 [Capeillère-Blandin (1982) Eur. J. Biochem. 128, 533-542] leads to the conclusion that the intramolecular electron exchange between haem b2 and haem c within the reaction complex occurs at a rate very similar to that determined experimentally in presence of the flavodehydrogenase domain. The low reaction rate observed with free cytochrome b2 is ascribed to the low stability of the reaction complex formed between free cytochrome b2 and cytochrome c.  相似文献   

12.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

13.
The thermodynamic parameters of the alkaline transition for oxidized native yeast iso-1 cytochrome c and Rhodopseudomonas palustris cytochrome c(2) (cytc(2)) have been determined through direct electrochemistry experiments carried out at variable pH and temperature and compared to those for horse and beef heart cytochromes c. We have found that both transition enthalpy and entropy are remarkably species dependent, following the order R. palustris cytc(2) > beef (horse) heart cytc>yeast iso-1 cytc. Considering the high homology at the heme-protein interface in the native species, this variability is likely to be mainly determined by differences in the structural and solvation properties and the relative abundance of the various alkaline conformers. Notably, changes in transition enthalpy and entropy among these cytochromes c are compensative and result in small variations in the free energy change of the process (which amounts approximately to +50 kJ mol(-1)) and consequently in the apparent pK(a) value. This compensation indicates that solvent reorganization effects play an important role in the thermodynamics of the transition. This mechanism is functional to ensure a relatively high pK(a) value for the alkaline transition, which is needed to preserve His,Met ligation to the heme iron in cytochrome c at physiological pH and temperature, hence the E(o) value required for the biological function.  相似文献   

14.
Flow microcalorimetric titrations of calmodulin with seminalplasmin at 25 degrees C revealed that the high affinity one-to-one complex in the presence of Ca2+ (Comte, M., Malnoe, A., and Cox, J. A. (1986) Biochem. J. 240, 567-573) is entirely enthalpy-driven (delta H0 = -50 kJ.mol-1; delta S0 = O J.K-1.mol-1; delta Cp0 = O J.K-1.mol-1) and is not influenced by the proton or Mg2+ concentration. The Sr2+- and Cd2+-promoted high affinity complexes are also exothermic for -49 and -45 kJ.mol-1, respectively. The observed low affinity interaction in the absence of divalent ions displays no enthalpy change. No enthalpy changes are observed when calmodulin and seminalplasmin are mixed in the presence of millimolar concentrations of Mg2+, Zn2+, or Mn2+. Enthalpy titrations of the 1:1 calmodulin-seminalplasmin complex with Ca2+ and of partly Ca2+-saturated calmodulin with seminalplasmin revealed that only the species calmodulin.Can greater than or equal to 2 is fully competent for high affinity interaction with seminalplasmin. Binding of the second Ca2+ is strongly enhanced (K2 greater than or equal to 5 X 10(7) M-1) as compared to that in free calmodulin (K2 = 2.6 X 10(5) M-1). This is essentially due to the concomitant strongly exothermic step of isomerization of the calmodulin-seminalplasmin complex from its low to its high affinity form. Binding of the remaining two Ca2+ to the high affinity seminalplasmin-calmodulin complex displays the same affinity constants and endothermic enthalpy change as in free calmodulin. A microcalorimetric study on the complex formation between Ca2+-saturated calmodulin and turkey gizzard myosin light chain kinase revealed that the interaction is strongly exothermic with an important overall gain of order (delta H0 = -85 kJ.mol-1; delta S0 = -122 J.K-1.mol-1) and occurs with significant proton uptake (0.44 H+ per mol at pH 7.5). The observed low affinity interaction (K = 2.2 X 10(5) M-1) in the absence of Ca2+ (Mamar-Bachi, A., and Cox, J. A. (1987) Cell Calcium 8, 473-482) displays neither a change in enthalpy nor in protonation.  相似文献   

15.
The reduction of cytochrome c oxidase by Cr2+, followed by means of stopped-flow spectrophotometry, exhibits two phases: the faster Cr2+-concentration-dependent reaction has an initial rate constant of 1.1 X 10(4)M-1-S-1, but reaches a rate limit at high concentration of reductant; the slower phase is concentration-independent with a rate of 0.3S-1. The activation energies of the fast and the slow processes are 35 and 71 kJ/mol respectively. The reduction kinetics of the mixed-valence CO complex and the cyanide-inhibited enzyme were compared with those of the fully oxidized forms: both the liganded species have a fast phase identical with that found in the oxidized oxidase. A comparison of the kinetic difference spectra obtained for the fast phase of reduction of oxidized oxidase with those obtained on reduction of the liganded species suggests that the rapid phase arises from the reduction ofhaem a, and the slow phase from the reduction of haem a3.  相似文献   

16.
In order to identify the regions of recombinant (r) tissue plasminogen activator (tPA) that mediate its kinetically relevant interaction with r-plasminogen activator inhibitor-1 (rPAI-1), we have determined the second-order association rate (k1) constants of domain-altered variants of tPA with rPAI-1, at 10 degrees C. With two-chain, wild-type recombinant tPA (tcwt-rtPA), obtained by expression of the human cDNA for tPA in five different cell systems (viz. insect cells, human kidney 293 cells, Chinese hamster ovary cells, human melanoma cells, and mouse C127 cells), the average k1 was 1.45 x 10(7) M-1 s-1 (range, 1.34 10(7) M-1 s-1-1.68 x 10(7) M-1 s-1). Since this value was not significantly different for the different tcwt-rtPA preparations, it appears as though the nature of the glycosylation of tPA plays little role in its initial interaction with PAI-1. The k1 determined for tcwt-rtPA was slightly higher than that of 0.87 x 10(7) M-1 s-1, obtained for a similar inhibition of human urokinase by rPAI-1. The k1 value obtained for single-chain (sc) wt-rtPA was approximately 6-fold lower than that of the two-chain molecules, results consistent with previous conclusions on this matter. The k1 value for tcwt-rtPA was not influenced by the presence of epsilon-aminocaproic acid, suggesting that the lysine-binding site associated with the kringle 2 (K2) region of tPA does not modulate the rate of its initial interaction with rPAI-1. Removal of the K2 domain from tPA, by recombinant DNA technology, results in a protein, F-E-K1-P (tc-r delta K2-tPA), containing only the finger (F), growth factor (E), kringle 1 (K1), and serine protease (P) domains. This variant protein was more rapidly inhibited by rPAI-1 (k1 = 3.00 x 10(7) M-1 s-1) than its wild-type counterparts. Deletion of both the K1 and K2 domains resulted in a variant molecule, F-E-P (tc-r delta K1 delta K2-tPA), that was slightly more rapidly inhibited by rPAI-1 (k1 = 2.01 x 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
J A Cox  M Milos    M Comte 《The Biochemical journal》1987,246(2):495-502
Two molecules of gramicidin S, a very rigid cyclic decapeptide rich in beta-sheet structure, can bind in a Ca2+-dependent way to a calmodulin molecule in the presence as well as in the absence of 4 M-urea. The flow-microcalorimetric titration of 25 microM-calmodulin with gramicidin S at 25 degrees C is endothermic for 21.3 kJ.mol-1; the enthalpy change is strictly linear up to a ratio of 2, indicating that the affinity constant for binding of the second gramicidin S is at least 10(7) M-1. In 4 M-urea the peptide quantitatively displaces seminalplasmin from calmodulin, as monitored by tryptophan fluorescence. An iterative data treatment of these competition experiments revealed strong positive co-operativity with K1 less than 5 X 10(5) M-1 and K1.K2 = 2.8 X 10(12) M-2. A competition assay with the use of immobilized melittin enabled us to monitor separately the binding of the second gramicidin S molecule: the K2 value is 1.9 X 10(7) M-1. By complementarity, the K1 value is 1.5 X 10(5) M-1. In the absence of urea the seminalplasmin displacement is incomplete: the data analysis shows optimal fitting with K1 less than 2 X 10(4) M-1 and K1.K2 = 3.2 X 10(11) M-2 and reveals that the mixed complex (calmodulin-seminalplasmin-gramicidin S) is quite stable and is even not fully displaced from calmodulin at high concentrations of gramicidin S. The activation of bovine brain phosphodiesterase by calmodulin is not impaired up to 0.2 microM-gramicidin S. According to our model the ternary complex enzyme-calmodulin-gramicidin is relatively important and displays the same activity as the binary complex enzyme-calmodulin. Gramicidin S also displaces melittin from calmodulin synergistically, as monitored by c.d. Our studies with gramicidin S reveal the importance of multipoint attachments in interactions involving calmodulin and confirm the heterotropic co-operativity in the binding of calmodulin antagonists first demonstrated by Johnson [(1983) Biochem. Biophys. Res. Commun. 112, 787-793].  相似文献   

18.
梅花鹿甲烷能代谢规律的研究   总被引:2,自引:1,他引:1  
李忠宽  张晓明 《兽类学报》1996,16(2):100-104
本文应用KB-1型呼吸测热装置,结合消化、代谢试验,对梅花鹿(Cervusnippon)甲烷能代谢规律进行了研究。结果表明,梅花鹿甲烷能的产生量随其采食量的增加而增加;也随着果食后时间的推移而减少,而且减少的幅度又随采食量的增加而下降;甲烷能的产生量分别占总能食入量、消化能食入量和体增热的6.61%、8.83%和10.88%;甲烷能的产生量随着日粮蛋白质水平的提高而降低,日粮蛋白质水平每提高1个百分点,甲烷能产生量就降低58.58kJ/d;分别以总能食入量(GEI)和干物质食入量(DMI)为自变量所建立的甲烷能(CH4E)估计分别为:CH4E(kJ/d)=0.07CEJ(kJ/d)-101.04(n=12,r=0.944,P<0.01)CH4E(kJ/d)=98.78+1.05DMI(g/d)(n=12,r=0.942,P<0.01)  相似文献   

19.
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed.  相似文献   

20.
Photooxidation of Rhodobacter capsulatus cytochrome c2 and four site-directed mutants by detergent solubilized Rhodobacter sphaeroides reaction centers was studied as a function of ionic strength at pH 8.0. Mutants of cytochrome c2 included K12D (lysine 12 substituted by aspartate), K14E (lysine 14 substituted by glutamate), K32E (lysine 32 substituted by glutamate), and K14E/K32E (lysines 14 and 32 substituted by glutamates). With respect to the wild-type, the mutants exhibited decreased second-order rate constants, indicating perturbation of their electrostatic interaction with the reaction center. In the transient complex, the interaction domain charges of the reaction center and wild-type cytochrome c2 were estimated to be -4.8 and +4.8, respectively. In contrast, the interaction domain charges of mutants K12D, K14E, K32E, and K14E/K32E were estimated to be +2.8, +3.7, +3.6 and +1.3, respectively. At infinite ionic strength, the second-order rate constant of the wild-type cytochrome c2 photooxidation (k infinity) was estimated to be 8.7 x 10(6) M-1 s-1. In the case of K32E, k infinity was not changed significantly (8.2 x 10(6) m-1 s-1), suggesting that the electrostatic perturbation of this mutant was largely overcome at high ionic strength. In contrast, the k infinity for K12D, K14E, and K14E/K32E were estimated to be decreased 2-7-fold. Consequently, mutations to R. capsulatus lysines 12 and 14 appear to perturb the distance and/or orientation of the cytochrome c2 relative to the reaction center in the reactive complex, as well as alter electrostatic interactions. Based upon the kinetic results presented here, the cytochrome c2-reaction center transient complex has been modeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号