首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro binding properties of the novel muscarinic antagonist [3H]AF-DX 116 were studied using a rapid filtration technique. Association and dissociation rates of [3H]AF-DX 116 binding were rapid at 25 degrees C (2.74 and 2.70 X 10(7) min-1 M-1 for K+1; 0.87 and 0.93 min-1 for k-1) but 20-40 times slower at 0-4 degrees C (0.13 and 0.096 X 10(7) min-1 M-1 for k+1; 0.031 and 0.022 min-1 for k-1 in cerebral cortical and cardiac membranes, respectively). Kinetic dissociation constants (Kds) were estimated to be 31.8 nM and 30.9 nM at 25 degrees C; 23.1 nM and 0-4 degrees C for the cerebral cortex and heart, respectively. In saturation studies, [3H]AF-DX 116 labeled 29 percent of the total [3H](-)QNB binding sites in the cerebral cortical membranes and 87 percent in the cardiac membranes, with Kd values of 28.9 nM and 17.9 nM, respectively. Muscarinic antagonists inhibited [3H]AF-DX 116 binding in a rank order of potency of atropine greater than dexetimide greater than AF-DX 116 greater than PZ greater than levetimide in both tissues. Except for PZ/[3H]AF-DX 116 and AF-DX 116/[3H]AF-DX 116 in the cerebral cortex, all the antagonist competition curves had Hill coefficients close to one. Carbachol and oxotremorine produced shallow inhibition curves against [3H]AF-DX 116 binding in both tissues. Regional distribution studies with [3H](-)QNB, [3H]PZ and [3H]AF-DX 116 showed that most of the muscarinic receptors in the cerebral cortex, hippocampus, nucleus accumbens and corpus striatum are of the M1 subtype while those in the brainstem, cerebellum and other lower brain regions are of the M2 subtype. These results indicate that [3H]AF-DX 116 is a useful probe for the study of heterogeneity of muscarinic cholinergic receptors.  相似文献   

2.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

3.
Some atypical muscarinic drugs were compared with classical drugs with respect to inhibition of specific binding of [3H]pirenzepine ([3H]PZ) and [3H]quinuclidinyl benzilate ([3H]QNB) to membrane preparations of rat brain. The interactions of the agonists McN-A343 and carbachol with [3H]QNB at muscarinic sites in brain stem preparations were differently modulated in the presence of an excess of PZ. Moreover, McN-A343 exhibited a preferential affinity for [3H]PZ sites in whole brain membranes whereas carbachol bound with high affinity to [3H]QNB sites in brain stem preparations. Various muscarinic agonists and antagonists displayed different affinity patterns in the [3H]PZ and [3H]QNB binding. These data are indicative of two populations of pharmacologically distinguishable binding sites and support the concept of muscarinic receptor heterogeneity in rat brain.  相似文献   

4.
We have utilized the LKB Ultrofilm method of autoradiography to anatomically localize putative M1 and M2 muscarinic receptor subtypes in human stellate ganglia. Ten micron sections were labeled in vitro with either 1 nM of the classical antagonist [3H](-)quinuclidinyl benzilate ([3H](-)QNB) or 20 nM of the non-classical antagonist [3H]pirenzepine ([3H]PZ), using 1 microM atropine sulfate to define non-specific binding for both ligands. Our results indicate that [3H](-)QNB and [3H]PZ binding sites are distributed within the principal ganglion cells and nerve bundles.  相似文献   

5.
[3H]Pirenzepine [( 3H]PZ) and [3H] (-)Quinuclidinylbenzilate [( 3H] (-)QNB) specific binding to soluble rat brain muscarinic cholinergic receptors was assessed as a function of time subsequent to receptor solubilization. The soluble brain muscarinic receptor is stable at 4 degrees C when assayed by [3H] (-)QNB binding (t 1/2 = 80 hrs). In contrast the pirenzepine state of the receptor decays rapidly (t 1/2 = 3.0 hrs). Prior occupation of the receptor with [3H] (-)QNB or [3H]PZ increases the receptor stability by two to five fold (t 1/2 QNB greater than 1,000 hrs; t 1/2 PZ = 6.5 hrs). These data indicate that pirenzepine binds to an allosteric state of the muscarinic receptor and that caution should be employed in the assignment of receptor subtypes based solely upon the binding of ligands which recognize unique conformational states.  相似文献   

6.
The activity of the muscarinic cholinergic system (acetylcholine, ACh; acetylcholinesterase, AChE; choline acetyltransferase, ChAT; muscarinic acetylcholine receptors) was studied in the carp brain. The ACh content (13.9 ± 1.1 nmol/g wet tissue) was estimated by gas chromatography after microwave irradiation focused to the head. The AChE and ChAT activities were 153 ± 13 nmol/min/mg protein and 817 ± 50 pmol/min/mg protein, respectively. The characteristics of [3H](−)quinuclidinyl benzilate ([3H](−)QNB) and [3H]pirenzepine ([3H]PZ) binding were also studied in brain membranes. Their specific binding was linearly dependent on the protein content and they appeared to bind with high affinity to a single, saturable binding site. A dissociation constant (Kd) of 47 ± 6.3 pM and a maximum number of binding sites (Bmax) of 627 ± 65 fmol/mg protein were obtained for [3H](−)QNB, with a Kd value of 3.85 ± 0.67 nM and a Bmax value of 95.3 ± 6.25 fmol/mg protein for [3H]PZ binding. The [3H]PZ binding amounted to only 15% of the [3H](−)QNB-labeled sites, as estimated from the ratio of the Bmax values of [3H](−)QNB and [3H]PZ, suggesting a low density of M1 subtype. Atropine sulfate, atropine methylnitrate and PZ inhibited the binding of both radioligands with Hill slopes (nH) close to unity. The nH value of AF-DX 116 was close to 1 against [3H](−)QNB binding, while it was 0.75 against [3H]PZ binding. The displacement curves of oxotremorine and carbachol were shallow for the binding of both radioligands. The rank order of potency of muscarinic ligands against [3H](−)QNB binding (Ki nM) was atropine sulfate (0.55) > atropine methylnitrate (1.61) > PZ (61.19) > oxotremorine (156.3) > AF-DX 116 (307) > carbachol (1301), while in the case of [3H]PZ binding it was atropine sulfate (0.24) > atropine methylnitrate (0.34) > PZ (10.38) > AF-DX 116 (55.87) > oxotremorine (62.79) > carbachol (1696). The results indicate the presence of a well-developed muscarinic cholinergic system with predominantly M2 receptors in the carp brain.  相似文献   

7.
The selective muscarinic antagonist L-[3H]-quinuclidinyl benzilate (L-[3H]QNB) binds reversibly and with high affinity (KD = 0.3 nM) to a single population (Bmax = 105 fmol/mg protein) of specific sites in nervous tissue of the crab Cancer magister. The binding site is stereoselective; (-)QNB is over 200 times more potent than (+)QNB as an inhibitor of specific L-[3H]QNB binding. The muscarinic antagonists scopolamine and atropine are over 10,000 times more potent inhibitors of L-[3H]QNB binding than the nicotinic antagonists decamethonium and d-tubocurarine. The muscarinic agonists oxotremorine, pilocarpine, arecoline, and carbachol also compete effectively for the L-[3H]QNB binding site. This pharmacological profile strongly suggests the presence of classical muscarinic receptors in the crab nervous system. These receptors are localized to nervous tissue containing cell bodies and neuropil, whereas specific L-[3H]QNB binding is low or absent in peripheral nerve, skeletal muscle, and artery.  相似文献   

8.
1. MPTP significantly lowered Kd of the binding of [3H]QNB to muscarine receptor without affecting Bmax values compared with those of control. Hill coefficients (nH) of control and MPTP (250 microM) added group were 1.15 +/- 0.127 and 0.56 +/- 0.202, respectively. 2. Prior addition of pargyline to MPTP did not prevent the decrease of [3H]QNB binding. The patterns of displacement of [3H]QNB by MPTP and MPP+ were similar to those by some muscarinic agonists, such as acetylcholine, carbamyl choline and methacholine. 3. These results suggest that MPTP might be muscarinic agonist and might play a role to produce Parkinsonism through directly affecting the muscarinic cholinergic receptors in vivo.  相似文献   

9.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

10.
The interaction of the potassium channel blocker 4-aminopyridine (4-AP) and its analogs with muscarinic acetylcholine receptors was studied in rat brain homogenate. 4-AP displaced specific [3H]quinuclidinyl benzilate [( 3H]QNB) binding in a concentration-dependent fashion. Hill coefficient values decreased with increasing the concentration of [3H]QNB and different analogs of 4-AP demonstrated varying potencies. Scatchard analysis of saturation isotherms of specific [3H]QNB binding showed that low concentrations of 4-AP slightly reduced maximum binding without affecting the equilibrium dissociation constant, whereas higher concentrations reduced maximum binding further and significantly increased the equilibrium dissociation constant. Schild plots of these data resulted in curvilinear functions. The results are discussed in terms of possible allosteric interactions between potassium channels and muscarinic receptor binding sites.  相似文献   

11.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

12.
Muscarinic cholinergic receptor sites in dog portal veins were analyzed directly using [3H]quinuclidinyl benzilate (QNB) as a ligand. Specific [3H]QNB binding to crude membrane preparations from the isolated veins was saturable, reversible and of high affinity (KD = 15.5 +/- 2.8 pM) with a Bmax of 110 +/- 14.7 fmol/mg protein. Scatchard and Hill plot analyses of the data indicated one class of binding sites. From kinetic analysis of the data, association and dissociation rate constants of 1.91 X 10(9) M-1 min-1 and 0.016 min-1, respectively, were calculated. The dissociation constant calculated from the equation KD = K-1/K+1 was 8.3 pM, such being in good agreement with the Scatchard estimate of KD (15.5 pM). Specific binding of [3H]QNB was displaced by muscarinic agents. Nicotinic cholinergic agents, alpha-bungarotoxin, nicotine and hexamethonium, were ineffective in displacing [3H]QNB binding at 10 microM. Our findings provide direct evidence for the existence of muscarinic cholinergic receptors in dog portal veins.  相似文献   

13.
[3H] quinuclidinyl benzilate (QNB), a specific muscarinic antagonist, was utilized to identify muscarinic cholinergic receptors on dispersed anterior pituitary cells. Scatchard analysis of [3H] QNB binding to receptors departs from linearity with upward concavity. A high affinity binding site having a dissociation constant (Kd) of 1.5 nM was observed when the [3H] QNB concentration was varied from 0.15 to 20 nM. A low affinity binding site (Kd 20 nM) was observed when [3H] QNB concentration was above 20 nM. Using 10 nM [3H] QNB for binding, the second order association rate constant (k1) of 0.064 nM?1 min?1 and first order dissociation rate constant (k2) of 0.078 min?1(T12 8 min) were observed. k2/k1 = Kd of 1.22 nM is in good agreement with Kd = 1.5 nM from equilibrium data. Muscarinic cholinergic receptor antagonists, atropine and scopolamine, and agonist oxtoremorine potently competed with [3H] QNB binding. A nicotinic cholinergic receptor agonist was 50 times less potent as a competitor of [3H] QNB binding than the muscarinic agonist.  相似文献   

14.
Membranes of neuron-like NG108-15 hybrid cells bind [3H]quinuclidinyl benzilate (QNB) with high affinity and specificity. Greater than 90% of total [3H]QNB binding is to sites having the pharmacological specificity of muscarinic acetylcholine receptors. Three significant features characterize the interaction of ligands with these sites: (1) Specific binding of [3H]QNB at equilibrium follows a simple adsorption isotherm with an apparent KD of 1 × 10?10 M; (2) Rates of [3H]QNB association and dissociation are biphasic and, as the binding reaction proceeds, the fraction of readily dissociable [3H]QNB decreases; (3) Competition against [3H]QNB for specific binding sites by antagonists gives a slope of 1 when analyzed on Hill plots, but competition for binding sites by agonists gives a slope of less than 1. A simple two-step model for activation is proposed to account for these features.  相似文献   

15.
Muscarinic receptors were assessed by [3H]-quinuclidinyl benzilate (QNB) binding in 900 xg supernatants of bovine superior cervical ganglia (SCG). At 30 degrees C half maximal binding was reached within 3 min and equilibrium within 30 min. Scatchard analysis revealed a single population of binding sites with dissociation constant (Kd) = 0.15 +/- 0.01 nM and site concentration (Bmax) = 101 +/- 4 fmoles/mg prot. Binding was specific for muscarinic drugs. Incubation of bovine SCG with different hormones (10(-7)M) indicated that LH, TRH and testosterone depressed significantly Bmax, and that prolactin decreased both Kd and Bmax of [3H] -QNB binding. Several other hormones tested (TSH, GH, FSH, LHRH, angiotensin II, bradykinin, melatonin, estradiol, thyroxine and triiodothyronine) did not affect QNB binding. Hormone effects were not due to a direct interference with radioligand binding to membrane. The injection of LH to orchidectomized rats depressed Bmax of SCG QNB binding without changing the Kd. These results suggest that muscarinic cholinergic neurotransmission in SCG may be affected by hormones.  相似文献   

16.
The binding of the non-selective muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) to rat parotid membranes was characterized. Under equilibrium conditions, [3H]QNB bound to a homogenous population of muscarinic receptors (Kd, 118 +/- 19 pM; Bmax, 572 +/- 42 fmol/mg membrane protein, n = 12). The addition of G protein activators AlF4- or guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) + Mg2+ increased the Kd by 77 +/- 7% (n = 4, P less than 0.05) and 83 +/- 27% (n = 7, P less than 0.05), respectively, without a change in the Bmax or homogeneity of the binding site. GTP gamma S added without exogenous Mg2+ did not affect [3H]QNB binding. Thus, optimal QNB binding requires a muscarinic receptor/G protein interaction.  相似文献   

17.
The effect of fluoride ion on the binding of the specific muscarinic agonist ligand [3H]c is methyldioxolane ([3H]CD) to the mouse cardiac muscarinic receptor was investigated. Utilizing equilibrium ligand binding experiments, sodium fluoride (10mM) was shown to decrease [3H]CD binding, measured at a concentration of 2 nM, by 52%. Studies with several different ions demonstrated that the reduction in [3H]CD binding was a specific effect of fluoride. This fluoride modulation was selective for agonist binding, as no effect of fluoride on the binding of the muscarinic antagonist [3H](?) quinuclidinyl benzilate (QNB) was observed.  相似文献   

18.
The binding and displacement of beta-adrenoceptor blockers, [3H]propranolol ([3H]PRP) and [3H]dihydroalprenolol ([3H]DHA), were studied on isolated rat erythrocytes, their membranes and ghosts; the binding of [3H]DHA and a M-cholinoceptor blocker, [3H]quinuclidinylbenzylate ([3H]QNB), on cerebral cortex membranes. In all experiments, ligand-receptor interactions conformed to a model of two pools of receptors in the same effector system and the binding of two ligand molecules to the receptor. The results were similar for the displacement of [3H]PRP, [3H]DHA and [3H]QNB with propranolol, dihydroalprenolol and quinuclidinyl-benzylate, respectively. The parameters of [3H]PRP to beta-adrenoceptor binding for intact erythrocytes were: Kd1 = 0.74+/-0.07 nM, Kd2 = 14.40+/-0.41 nM, B1 = 24+/-2 unit/cell, B2 = 263+/-5 unit/cell; for ghosts, Kd1 = 0.70+/-0.17 nM, Kd2 = 19.59+/-2.59 nM, B1 = 9+/-1 fmol/mg protein, B2 = 39+/-4 fmol/mg protein. Receptor affinities were similar in erythrocytes and ghosts; on the ghost membrane, the number of receptors was considerably lower (B1 = 2 unit/cell, B2 = 6 unit/cell). The parameters of [3H]QNB to M-cholinoceptor binding of the cerebral cortex membrane were the following: Kd1 = 0.43 nM, Kd2 = 2.83 nM, B1 = 712 fmol/mg, B2 = 677 fmol/mg.  相似文献   

19.
To further analyze functionally important cholinergic receptors on lymphocytes, we studied the binding of the muscarinic antagonist Quinuclidinyl benzilate (QNB) to murine splenic lymphocytes. Studies of displacement of [3H]QNB by unlabelled QNB on lymphocytes revealed at least two binding sites. Scatchard analysis of equilibrium binding isotherms also distinguished two sites with apparent Kds of 480 nM and 16 μM. There was greater specific QNB binding to B cell-enriched lymphocyte fractions than to T cell fractions. Lymphocyte binding demonstrated temperature-dependent dissociability, and specific binding occurred on isolated lymphocyte membranes as well. Both muscarinic and nicotinic ligands competed for QNB binding to lymphocytes with low and nearly equal affinity. Therefore, QNB binding sites on lymphocytes appear to be of low affinity and of mixed muscarinic and nicotinic character.  相似文献   

20.
J B Cheng  R G Townley 《Life sciences》1982,30(24):2079-2086
This study was undertaken to compare the activity of muscarinic and beta adrenergic receptors in bovine peripheral lung to the corresponding receptor activity in tracheal smooth muscle. We used [3H] quinuclidinyl benzilate (QNB) and [3H]dihydroalprenolol (DHA) to measure muscarinic and beta receptor activity, respectively. Binding to QNB and DHA at 25 degrees C was rapid, reversible, saturable and of high affinity. The order of potency for cholinergic and adrenergic agents competing for binding was compatible with muscarinic and beta 2 adrenergic potencies. We found that the concentration of muscarinic receptor binding sites was 37-fold greater in the tracheal muscle preparation (2805 +/- 309 fmol/mg protein) than in the peripheral lung preparation (76 +/- 28 fmol/mg protein). Unlike muscarinic receptors, the lung contained 8-fold higher concentration of the beta adrenergic receptors than did the tracheal muscle (1588 +/- 417 vs. 199 +/- 42 fmol/mg protein). The dissociation constant or the agonist's inhibitory constant (Ki) for either receptor binding site, however, was not significantly different between the two tissues. Furthermore, in vitro contraction studies showed that the response of tracheal muscle strips to methacholine was markedly greater than the response of peripheral lung strips, a finding consistent with the QNB binding result. The muscle but not the peripheral lung strip exhibited a relaxing response to epinephrine. Our data indicate a striking quantitative difference in muscarinic and beta adrenergic receptors between lung tissue and tracheal muscle, and that each receptor in the lung is qualitatively similar to the corresponding receptor in the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号