首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of reovirus by minerals and soils.   总被引:7,自引:1,他引:7       下载免费PDF全文
Adsorption of [35S]methionine-labeled reovirus by 30 dry soils, minerals, and finely ground rocks suspended in synthetic freshwater at pH 7 was investigated to determine the conditions necessary for optimum virus removal during land application of wastewaters. All of the minerals and soils studied were excellent adsorbents of reovirus, with greater than 99% of the virus adsorbed after 1 h at 4 degrees C. Thereafter, virus remaining in suspension was significantly inactivated, and within 24 h a three to five log10 reduction in titer occurred. The presence of divalent cations, i.e., Ca2+ and Mg2+, in synthetic freshwater enhanced removal, whereas soluble organic matter decreased the amount of virus adsorbed in secondary effluent. The amount of virus adsorbed by these substrates was inversely correlated with the amount of organic matter, capacity to adsorb cationic polyelectrolyte, and electrophoretic mobility. Adsorption increased with increasing available surface area, as suspended infectivity was reduced further by the more finely divided substrates. However, the organic content of the soils reduced the level of infectious virus adsorbed below that expected from surface area measurements alone. The inverse correlation between virus adsorption and substrate capacity for cationic polyelectrolyte indicates that the adsorption of infectious reovirus particles is predominately a charged colloidal particle-charged surface interaction. Thus, adsorption of polyelectrolyte may be useful in predicting the fate of viruses during land application of sewage effluents and sludges.  相似文献   

2.
Soil contamination by SARS-CoV-2 is highly probable because soil can collect several transporters of the virus, such as fallout aerosols, wastewaters, relatively purified sludges, and organic residues. However, the fate and status of SARS-CoV-2 in soil and the possible risks for human health through contaminated food are unknown. Therefore, this perspective paper discusses the challenges of determining the SARS-CoV-2 in soil and the mechanisms concerning its adsorption, movement, and infectivity in soil, considering what has already been reported by perspective papers published up to May 2021. These issues are discussed, drawing attention to the soil virus bibliography and considering the chemical structure of the virus. The mechanistic understanding of the status and behavior of SARS-CoV-2 in soil requires setting up an accurate determination method. In addition, future researches should provide insights into i) plant uptake and movement inside the plant, ii) virus adsorption and desorption in soil with the relative infectivity, and iii) its effects on soil functions. Models should simulate spatial localization of virus in the soil matrix.  相似文献   

3.
The removal of enteric and tracer viruses by the overland runoff mode of domestic wastewater treatment was evaluated. Raw and primary and secondary treated wastewaters were sprayed onto grass-covered, 36-m soil plots of fine, sandy loam overlying an impermeable clay subsoil. Tracer bacteriophage f2 was seeded into the applied wastewaters, which were subsequently sampled at several points along the length of the plots. Assay of effluent samples revealed modest tracer virus removals of 30 to 60%. Data from timed experiments indicated that advancement of tracer virus to the bottom of the slopes proceeded at the same rate as wastewater, reaching the plot effluents within 50 to 90 min after application. Indigenous enteric virus levels were reduced by approximately 68 to 85% during migration down the treatment slopes. Soil sampling revealed that, although some f2 virus was found associated with the wastewater-saturated topsoil, little penetration of virus into the soil profile occurred. Laboratory soil adsorption studies revealed that poliovirus I was adsorbed much more readily than f2 virus. Comparison of virus removal characteristics during overland runoff with chemical removal characteristics of wastewater did not reveal any obvious correlations that could be used to predict virus removal.  相似文献   

4.
The effect of fulvic acid, the major fraction of natural soluble organic matter, on the adsorption of MS2 bacteriophage to soil was investigated in controlled laboratory experiments. Batch experiments together with scanning electron microscopy-energy-dispersive X-ray analysis showed that fulvic acid complexed phage, which prevented its adsorption to soil. Phage strongly adsorbed to soil in the absence of fulvic acid. Phage which was complexed with fulvic acid was not irreversibly inactivated and could become viable under proper conditions, illustrating the importance of assay and elution procedures in the recovery of virus from aqueous solutions.  相似文献   

5.
The effect of fulvic acid, the major fraction of natural soluble organic matter, on the adsorption of MS2 bacteriophage to soil was investigated in controlled laboratory experiments. Batch experiments together with scanning electron microscopy-energy-dispersive X-ray analysis showed that fulvic acid complexed phage, which prevented its adsorption to soil. Phage strongly adsorbed to soil in the absence of fulvic acid. Phage which was complexed with fulvic acid was not irreversibly inactivated and could become viable under proper conditions, illustrating the importance of assay and elution procedures in the recovery of virus from aqueous solutions.  相似文献   

6.
Summary Surface (0-25 cm) and subsurface (25–50 cm) soil sawmples were collected from a loamy sand area (classified as Lithic Quartzipsamments) where sewage effluents of Cawiro City have been used in irrigation for 23 and 47 years and were tested for their levels of organic matter, P, N, B, Cd, Co, Cr, Cu, and Pb. The use of sewage effluents in irrigation, year after year, markedly increased available phosphorus and both total and soluble nitrogen in soil. The increase was also observed with respect to water soluble boron and total and DTPA-extractable heavy metals. The surface layers contained higher amounts of elements than the subsurface ones. We conclude that use of Cairo sewage effluents in irrigating the loamy sand soil has markedly increased the levels of heavy metals in soil and attention should be focused on their accumulation in fruit of citrus.  相似文献   

7.
Interactions and Survival of Enteric Viruses in Soil Materials   总被引:19,自引:16,他引:3       下载免费PDF全文
There were marked differences in the abilities of eight different soil materials to remove and retain viruses from settled sewage, but for each soil material the behavior of two different viruses, poliovirus type 1 and reovirus type 3, was often similar. Virus adsorption to soil materials was rapid, the majority occurring within 15 min. Clayey materials efficiently adsorbed both viruses from wastewater over a range of pH and total dissolved solids levels. Sands and organic soil materials were comparatively poor adsorbents, but in some cases their ability to adsorb viruses increased at low pH and with the addition of total dissolved solids or divalent cations. Viruses in suspensions of soil material in settled sewage survived for considerable time periods, despite microbial activity. In some cases virus survival was prolonged in suspensions of soil materials compared to soil-free controls. Although sandy and organic soil materials were poor virus adsorbents when suspended in wastewater, they gave ≥95% virus removal from intermittently applied wastewater as unsaturated, 10-cm-deep columns. However, considerable quantities of the retained viruses were washed from the columns by simulated rainfall. Under the same conditions, clayey soil material removed ≥99.9995% of the viruses from applied wastewater, and none were washed from the columns by simulated rainfall.  相似文献   

8.
Interactions and survival of enteric viruses in soil materials   总被引:1,自引:0,他引:1  
There were marked differences in the abilities of eight different soil materials to remove and retain viruses from settled sewage, but for each soil material the behavior of two different viruses, poliovirus type 1 and reovirus type 3, was often similar. Virus adsorption to soil materials was rapid, the majority occurring within 15 min. Clayey materials efficiently adsorbed both viruses from wastewater over a range of pH and total dissolved solids levels. Sands and organic soil materials were comparatively poor adsorbents, but in some cases their ability to adsorb viruses increased at low pH and with the addition of total dissolved solids or divalent cations. Viruses in suspensions of soil material in settled sewage survived for considerable time periods, despite microbial activity. In some cases virus survival was prolonged in suspensions of soil materials compared to soil-free controls. Although sandy and organic soil materials were poor virus adsorbents when suspended in wastewater, they gave >/=95% virus removal from intermittently applied wastewater as unsaturated, 10-cm-deep columns. However, considerable quantities of the retained viruses were washed from the columns by simulated rainfall. Under the same conditions, clayey soil material removed >/=99.9995% of the viruses from applied wastewater, and none were washed from the columns by simulated rainfall.  相似文献   

9.
溶解性有机碳在红壤水稻土中的吸附及其影响因素   总被引:12,自引:0,他引:12  
吸附作用是影响土壤中溶解性有机碳(DOC)迁移转化及生物有效性的重要反应过程,研究DOC在土壤中的吸附行为,对正确阐明土壤有机碳的循环和转化特征以及进行污染风险评估有重要意义.采用平衡法研究了红壤水稻土对DOC的吸附特征,并分析土壤有机质、粘粒含量及pH值与DOC吸附量之间的关系.结果表明,供试土壤对DOC的吸附等温线符合Freundlich和Linear方程.不同土壤对DOC的吸附能力有明显差异.在相同浓度下,DOC吸附量以第四纪红色粘土发育的低肥力水稻土最大,第三纪红砂岩风化物发育的低肥力水稻土次之,两种高肥力水稻土最小.土壤对DOC的吸附过程分为快、慢两个阶段,0-0.25 h内DOC的吸附速率最大,随着时间的推移,吸附速率渐小,2-4 h后基本达到吸附平衡.描述供试土壤对DOC吸附动力学过程的最优模型为一级扩散方程,其次为Elovich方程和抛物扩散方程.粘粒含量和有机质是影响土壤DOC吸附量的重要因素,随着粘粒含量的增加,有机质含量的降低,DOC的吸附量增大.  相似文献   

10.
不同粒径红壤胶体颗粒对DNA的吸附特性   总被引:1,自引:0,他引:1  
采用平衡法研究了含有机质粗粘粒、去有机质粗粘粒、含有机质细粘粒和去有机质细粘粒4种红壤胶粒对DNA的吸附特征及其热力学特性.结果表明: 4种红壤胶粒对DNA的吸附是快反应过程,Langmuir吸附方程可较好地描述4种红壤胶体对DNA的等温吸附,相应拟合的相关系数r2分别为0.974、0.991、0.958和0.975.最大吸附量表现为含有机质细粘粒>去有机质细粘粒>含有机质粗粘粒>去有机质粗粘粒.电解质浓度和种类及吸附体系pH是影响红壤胶体对DNA吸附的重要因子,一定电解质浓度范围(NaCl<60 mmol·L-1,CaCl2<10 mmol·L-1)内,DNA在红壤胶体表面的吸附量随电解质浓度的增大而显著增加,其中钙离子的促进作用大于钠离子,但随着吸附体系pH的上升而显著降低.含有机质胶粒对DNA的吸附过程是吸热反应,而去有机质胶粒对DNA的吸附过程是放热反应,红壤胶粒对DNA的吸附反应过程是一个熵增过程.  相似文献   

11.
Virus adsorption to soils is considered to be the most important factor in removing viruses after land treatment of wastewater. Most of the studies on virus adsorption to soils have utilized poliovirus as the model system. In the present study, comparative adsorption of a number of different types and strains of human enteroviruses and bacteriophages to nine different soil types was studied. Under the experimental conditions of this study, greater than 90% of all viruses adsorbed to a sandy loam soil except echovirus types 1, 12, and 29 and a simian rotavirus (SA-11), which adsorbed to a considerably lower degree. A great deal of variability was observed between adsorption of different strains of echovirus type 1, indicating that viral adsorption to soils is highly strain dependent. Of the five phages studied, f2 and phi X174 adsorbed the least. In addition to being dependent on type and strain of virus, adsorption was found to be influenced also by type of soil. Thus, soils having a saturated pH of less than 5 were generally good adsorbers. From these results, it appears that no one enterovirus or coliphage can be used as the sole model for determining the adsorptive behavior of viruses to soils and that no single soil can be used as the model for determining viral adsorptive capacity of all soil types.  相似文献   

12.
Virus adsorption to soils is considered to be the most important factor in removing viruses after land treatment of wastewater. Most of the studies on virus adsorption to soils have utilized poliovirus as the model system. In the present study, comparative adsorption of a number of different types and strains of human enteroviruses and bacteriophages to nine different soil types was studied. Under the experimental conditions of this study, greater than 90% of all viruses adsorbed to a sandy loam soil except echovirus types 1, 12, and 29 and a simian rotavirus (SA-11), which adsorbed to a considerably lower degree. A great deal of variability was observed between adsorption of different strains of echovirus type 1, indicating that viral adsorption to soils is highly strain dependent. Of the five phages studied, f2 and phi X174 adsorbed the least. In addition to being dependent on type and strain of virus, adsorption was found to be influenced also by type of soil. Thus, soils having a saturated pH of less than 5 were generally good adsorbers. From these results, it appears that no one enterovirus or coliphage can be used as the sole model for determining the adsorptive behavior of viruses to soils and that no single soil can be used as the model for determining viral adsorptive capacity of all soil types.  相似文献   

13.
从吸附、解吸、可萃取态残留变化3个方面,研究了外源有机质对粘壤土、砂粉土和粉壤土中菲的增强固定作用.外源有机质为有机商品肥和泥炭.结果表明,施加外源有机质后,供试土壤对菲的吸附等温线仍呈线性,分配作用为土壤吸附菲的主导机制.有机商品肥或泥炭能显著促进供试土样对菲的吸附.施加同量的外源有机质,土壤吸附菲的Kd值的增加幅度与土壤有机碳含量(foc)成正比,表明土壤的foc越大,外源有机质对菲吸附的促进效果越好.解吸实验表明,施加外源有机商品肥或泥炭能够抑制土壤中菲的解吸,解吸量显著低于原土.经64 d培养,施加外源有机质的3种土壤中的可萃取态残留菲含量降低;由于泥炭的有机质含量高于有机商品肥,施加泥炭的土样中可萃取态残留菲的降幅更大;原土的foc越高,外源有机质对菲可萃取性的抑制效果越明显.可见,施加外源有机质可增强土壤中菲的吸附固定、抑制其解吸、并降低其可萃取态残留.  相似文献   

14.
Organic matter in sewage, soil, and aquatic systems may enhance or inhibit the infectivity of viruses associated with particulates (e.g., clay minerals, sediments). The purpose of this investigation was to identify the mechanisms whereby organic matter, in the form of defined proteins, affects the adsorption of reovirus to the clay minerals kaolinite and montmorillonite and its subsequent infectivity. Chymotrypsin and ovalbumin reduced the adsorption of reovirus to kaolinite and montmorillonite homoionic to sodium. Lysozyme did not reduce the adsorption of the virus to kaolinite, but it did reduce adsorption to montmorillonite. The proteins apparently competed with the reovirus for sites on the clay. As lysozyme does not adsorb to kaolinite by cation exchange, it did not inhibit the adsorption of reovirus to this clay. The amount of reovirus desorbed from lysozyme-coated montmorillonite was approximately 38% less (compared with the input population) than that from uncoated or chymotrypsin-coated montmorillonite after six washings with sterile distilled water. Chymotrypsin and lysozyme markedly decreased reovirus infectivity in distilled water, whereas infectivity of the virus was enhanced after recovery from an ovalbumin-distilled water-reovirus suspension (i.e., from the immiscible pelleted fraction plus supernatant). The results of these studies indicate that the persistence of reovirus in terrestrial and aquatic environments may vary with the type of organic matter and clay mineral with which the virus comes in contact.  相似文献   

15.
Effect of proteins on reovirus adsorption to clay minerals.   总被引:4,自引:3,他引:1       下载免费PDF全文
Organic matter in sewage, soil, and aquatic systems may enhance or inhibit the infectivity of viruses associated with particulates (e.g., clay minerals, sediments). The purpose of this investigation was to identify the mechanisms whereby organic matter, in the form of defined proteins, affects the adsorption of reovirus to the clay minerals kaolinite and montmorillonite and its subsequent infectivity. Chymotrypsin and ovalbumin reduced the adsorption of reovirus to kaolinite and montmorillonite homoionic to sodium. Lysozyme did not reduce the adsorption of the virus to kaolinite, but it did reduce adsorption to montmorillonite. The proteins apparently competed with the reovirus for sites on the clay. As lysozyme does not adsorb to kaolinite by cation exchange, it did not inhibit the adsorption of reovirus to this clay. The amount of reovirus desorbed from lysozyme-coated montmorillonite was approximately 38% less (compared with the input population) than that from uncoated or chymotrypsin-coated montmorillonite after six washings with sterile distilled water. Chymotrypsin and lysozyme markedly decreased reovirus infectivity in distilled water, whereas infectivity of the virus was enhanced after recovery from an ovalbumin-distilled water-reovirus suspension (i.e., from the immiscible pelleted fraction plus supernatant). The results of these studies indicate that the persistence of reovirus in terrestrial and aquatic environments may vary with the type of organic matter and clay mineral with which the virus comes in contact.  相似文献   

16.
The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray irrigation to sandy loam and silt loam soils in field test cells was examined. The amount of f2 recovered from 170-cm-deep soil percolate samples taken over a 53-day period never exceeded 0.1% of applied virus levels and was usually below detection limits. Indigenous enterovirus levels in percolate waters also constituted only a small portion of those found in the wastewaters. At 10 days after seeding, f2 virus was present throughout the soil column but tended to accumulate around the soil core middepths. Coliphage f2 disappeared from the soil surface regions at a high rate, and by 53 days very little virus could be detected within the length of the soil columns. Sterilized soil core segments from different depths were studied to determine their virus adsorption capabilities when suspended in either wastewater, test cell percolate water, or distilled water containing divalent cations. The adsorptive capacity of Windsor and Charlton soils for poliovirus 1 and coliphage f2 increased greatly with the soil sample depth until leveling off at the midcore depths. Soil suspended in wastewater had the least virus adsorption capability for all depths studied.  相似文献   

17.
Poliovirus survival and movement in a sandy forest soil.   总被引:11,自引:11,他引:0       下载免费PDF全文
Movement of poliovirus I (Chat) through nonsterile core samples of a sandy forest soil was monitored, using several regimens of loading with either dechlorinated final effluent from an operating activated sludge treatment plant or distilled water. Stimulated cycles of rainfall and effluent applications, resulting in ionic gradients, were shown to affect virus movement. Such studies indicate that poliovirus applied in effluents may move considerable distances through this soil after rainfall. Survival of poliovirus in the soil at 4 and 20 C has been monitored for 84 days. During this period, the capacity of the virus to migrate is unchanged.  相似文献   

18.
Poliovirus survival and movement in a sandy forest soil.   总被引:11,自引:0,他引:11  
Movement of poliovirus I (Chat) through nonsterile core samples of a sandy forest soil was monitored, using several regimens of loading with either dechlorinated final effluent from an operating activated sludge treatment plant or distilled water. Stimulated cycles of rainfall and effluent applications, resulting in ionic gradients, were shown to affect virus movement. Such studies indicate that poliovirus applied in effluents may move considerable distances through this soil after rainfall. Survival of poliovirus in the soil at 4 and 20 C has been monitored for 84 days. During this period, the capacity of the virus to migrate is unchanged.  相似文献   

19.
The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray irrigation to sandy loam and silt loam soils in field test cells was examined. The amount of f2 recovered from 170-cm-deep soil percolate samples taken over a 53-day period never exceeded 0.1% of applied virus levels and was usually below detection limits. Indigenous enterovirus levels in percolate waters also constituted only a small portion of those found in the wastewaters. At 10 days after seeding, f2 virus was present throughout the soil column but tended to accumulate around the soil core middepths. Coliphage f2 disappeared from the soil surface regions at a high rate, and by 53 days very little virus could be detected within the length of the soil columns. Sterilized soil core segments from different depths were studied to determine their virus adsorption capabilities when suspended in either wastewater, test cell percolate water, or distilled water containing divalent cations. The adsorptive capacity of Windsor and Charlton soils for poliovirus 1 and coliphage f2 increased greatly with the soil sample depth until leveling off at the midcore depths. Soil suspended in wastewater had the least virus adsorption capability for all depths studied.  相似文献   

20.
C J Hurst  C P Gerba    I Cech 《Applied microbiology》1980,40(6):1067-1079
Because of the increasing emphasis placed upon land application as a means of wastewater disposal, it is important to evaluate the influences of different factors upon virus survival in soil. The objective of this study was to measure the effects of various environmental variables on virus persistence. Test samples of soil were placed in vials, and the soil was wetted with suspensions of virus in either distilled water, unchlorinated secondary sewage effluent, or mixtures of effluent and water. The viruses used were coxsackieviruses A9 and B3, echovirus 1, poliovirus 2, rotavirus SA11, and bacteriophages T2 and MS2. The rate of virus inactivation was evaluated statistically with regard to conditions under which the vials were incubated and to the soil characteristics. The factors that were found to influence virus survival were temperature, soil moisture content, presence of aerobic microorganisms, degree of virus adsorption to the soil, soil levels of resin-extractable phosphorus, exchangeable aluminium, and soil pH. Overall, temperature and virus adsorption to soil appeared to be the most important factors affecting virus survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号