首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
M. Oyama  Y. Maeda  I. Takeuchi 《Protoplasma》1984,123(2):152-159
Summary When shaken in a glucose-albumin-cyclic AMP medium, dissociated aggregative cells form small clumps in which prespore cells differentiate fairly synchronously (Okamoto 1981). Formation of prespore vacuoles (PSVs) in differentiating prespore cells was examined in these culture conditions, by electronmicroscopy and immunocytochemistry.After 6 hours of culture, a typical Golgi apparatus composed of vesicles and stacked flat cisternae develops near the nucleus. FITC-conjugated antispore serum stains a crescent-shaped region in the cells which seems to correspond to the Golgi area. After 9 hours, flat sacs which contain electron dense lining membrane similar to that of PSVs appear alongside Golgi cisternae. Later, partially and fully round PSVs are observed in this region, suggesting that flat sacs round up to become mature PSVs. After 12 hours, as mature PSVs increase in number, they become dispersed throughout the cytoplasm and a typical Golgi apparatus with cisternae disappears. When cultured in a medium devoid of cyclic AMP, cells develop neither Golgi cisternae nor PSVs. These results strongly suggest that PSVs form from Golgi cisternae.  相似文献   

2.
TRAP1 (tumor necrosis factor receptor-associated protein 1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. In this study, we mainly examined the behavior of Dictyostelium TRAP1 homologue, Dd-TRAP1, during Dictyostelium development by immunoelectron microscopy. In vegetatively growing D. discoideum Ax-2 cells, Dd-TRAP1 locates in nucleolus and vesicles in addition to the cell cortex including cell membrane. Many of Dd-TRAP1 molecules moved to the mitochondrial matrix in response to differentiation, although Dd-TRAP1 on the cell membrane seems to be retained. Some Dd-TRAP1 was also found to be secreted to locate outside the cell membrane in Ax-2 cells starved for 6 h. At the multicellular slug stage, Dd-TRAP1 was primarily located in mitochondria and cell membrane in both prestalk and prespore cells. More importantly, in differentiating prespore cells, a significant number of Dd-TRAP1 locates in the PSV (prespore-specific vacuole) that is a sole cell type-specific organelle and essential for spore wall formation, whereas some Dd-TRAP1 in the cell cortical region of prestalk cells. These findings strongly suggest the importance of Dd-TRAP1 regulated temporally and spatially during Dictyostelium development. Incidentally, we also have certified that the glucose-regulated protein 94 (Dd-GRP94) is predominantly located in Golgi vesicles and cisternae, followed by its colocalization with Dd-TRAP1 in the PSV.  相似文献   

3.
盘基网柄菌细胞分化和凋亡的形态特征   总被引:2,自引:0,他引:2  
本文用透射电镜和DAPI荧光染色法研究了盘基网柄菌(Dictyosteliumdiscoideum)细胞分化和柄细胞的凋亡特征,结果显示:细胞丘中绝大部分细胞的线粒体内出现一小空泡,随着发育进程,空泡逐渐增大,线粒体的嵴随之变少,直至线粒体完全空泡化,最后形成单层膜的空泡。据此我们推测前孢子细胞特有的空泡来源于线粒体,并且这种细胞器水平上的内自噬现象与前孢子细胞分化密切相关。在前柄细胞分化阶段,前柄细胞中出现数个自噬泡,最初吞噬的线粒体嵴结构完整;随着前柄细胞进一步分化,部分线粒体内出现类似于前孢子细胞中的内自噬现象,并且自噬泡只吞噬这种线粒体。在凋亡后期,细胞核内核仁消失,染色体固缩形成高电子密度斑块,自噬泡采用与细胞核膜融合的方式来完成核的清除,最后柄细胞完全空泡化且包被一层纤维素壁。作者认为前柄细胞凋亡过程实质上是一种分化过程,所以有其鲜明特点:细胞出现自噬泡,标志着凋亡开始,用自噬而不是凋亡小体来清除胞内各种细胞器,直到分化最后阶段才清除细胞核和形成纤维素壁。这些特点不仅是前柄细胞凋亡的形态学指标,也和细胞发育和分化相关。  相似文献   

4.
Jane Robb  Barbara Lee 《Protoplasma》1986,135(2-3):102-111
Summary The most prominent ultrastructural characteristics of the cyst ofHaptoglossa mirabilis are a large centrally-placed nucleus which is partially ringed by three or four parallel cisternae of rough endoplasmic reticulum (r-ER), a centriole pair and single large Golgi complex which occupy the anterior end of the cell, and a population of provacuoles which occupies the posterior. During germination these organelles migrate into a narrow germ tube which subsequently expands to form the gun cell initial. The extracellular components of the attack apparatus (i.e. missile and injection tube) are formed entirely in the developing gun cell; indirect evidence suggests that both the Golgi complex and r-ER are involved in their synthesis. The intra-cellular component of the attack apparatus comprises the posterior, anterior and apical vacuoles. The posterior vacuole forms by fusion and expansion of the original cyst provacuoles; the formation of the anterior and apical vacuoles occurs late in gun cell differentiation and involves fusion of Golgi-derived vesicles.  相似文献   

5.
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. We have previously demonstrated that Dictyostelium discoideum TRAP1 (Dd-TRAP1) synthesized at the vegetative growth phase is retained during the whole course of D. discoideum development, and that at the multicellular slug stage, it is located in prespore-specific vacuoles (PSVs) of prespore cells as well as in the cell membrane and mitochondria. Thereupon, we examined the function of Dd-TRAP1 in prepore and spore differentiation, using Dd-TRAP1-knockdown cells (TRAP1-RNAi cells) produced by the RNA interference method. As was expected, Dd-TRAP1 contained in the PSV was found to be exocytosed during sporulation to constitute the outer-most layer of the spore cell wall. In the TRAP1-RNAi cells, PSV formation and therefore prespore differentiation were significantly impaired, particularly under a heat stress condition. Although the TRAP1-RNAi cells formed apparently normal-shaped spores with a cellulosic wall, the spores were less resistant to heat and detergent treatments, as compared with those of parental MB35 cells derived from Ax-2 cells. These findings strongly suggest that Dd-TRAP1 may be closely involved in late development including spore differentiation, as well as in early development as realized by its induction of prestarvation response.  相似文献   

6.
In the slug of the cellular slime mold, Dictyostelium discoideum , are differentiated the anterior prestalk cells and the posterior prespore cells, whose differentiation is characterized by formation of the prespore specific vacuole (PSV). The ultrastructural changes of the PSV were investigated during dedifferentiation of a prespore cell disaggregated from a slug and also during conversion of the cell type, caused by fragmentation of a slug, between the prespore and the prestalk cells.
During the dedifferentiation, the PSV first lost its lining membrane which subsequently congregated, together with the inner filamentous material, to form some electron dense granules. Finally, the vacuole membrane was punctured, and the granules were released into cytoplasm. During conversion of the prespore to the prestalk cell, the PSV was degraded through the same process as in dedifferentiation, but the degradation proceeded much more synchronously in a converting cell. When a prestalk fragment was isolated from a slug, formation of the PSV was detected in no cell until 2 hr of incubation. After a lag, the PSV was formed in a converting cell through the process which is not a simple reversal of its degrading process.  相似文献   

7.
Taking advantage of the fact that differentiation of the prespore cell of Dictyostelium discoideum is characterized by synthesis of a prespore specific antigen, the process of its differentiation during the course of morphogenesis was quantitatively studied by determining the proportion of prespore cells and their cellular contents of the antigen, using the method of microfluorometry in combination with immunocytochemistry with antispore serum. The cells synthesizing the antigen became first detectable in the early aggregation center which was about to form a papilla. As the papilla elongated, the number of prespore cells rapidly increased up to the stationary level (70–80% of total cells) before completion of slug formation. During the process antigenic contents of prespore cells were gradually increased and leveled off in the early migration stage. When culmination was induced, antigenic contents were markedly increased to the maximum, which was followed by a sudden decrease immediately before spore formation. On the other hand, the proportions of prespore to total cells were kept constant at the stationary level all through the migration and culmination stages, in spite of a persistent decrease during culmination in the total number of cells due to continuous differentiation of the prestalk into the mature stalk cells. These results were discussed in relation to possible mechanisms of differentiation in this organism.  相似文献   

8.
Summary Changes in an autophagic system during differentiation of cells ofDictyostelium discoideum, NC-4 were studied under light and electron microscopes, and it was demonstrated cytochemically that acid phosphatase was almost exclusively localized in food and autophagic vacuoles. Autophagic vacuoles first appeared during formation of loose aggregates, coupled with the defecation of food vacuoles. Autophagic vacuoles seem to originate from flat sacs which segregate parts of the cytoplasm. No acid phosphatase was detected in the vacuoles when first formed, but activity appeared later probably due to fusion with Golgi-like vesicles. When starved cells were not allowed to aggregate due to a low cell density, they formed no autophagic vacuoles but retained many food vacuoles. This indicates that the formation of autophagic vacuoles is not simply due to starvation, but to cell interaction mediated by cell contact. Autophagic vacuoles containing acid phosphatase rapidly increased in number in all cells in the early stage of aggregation. After papillae formed, however, they selectively decreased in the prespore cells, but developed further and grew larger in the prestalk cells.  相似文献   

9.
Changes of fine structure during prolonged migration of Dictyostelium discoideum slugs were studied by electronmicroscopy. Prespore specific vacuoles of cells located near the substratum gradually degenerated and the prespore antigen contained in them was lost. During the process, mitochondria in the prespore cells were transformed dramatically: as the mitochondrion elongates, its central part becomes thinner and the cristae become localized at its two ends. Then it bends and its two ends fuse to segregate part of the cytoplasm. The cristae then accumulate in the original ends. Similar mitochondrial transformation was observed in prespore cells of cell masses induced to culminate after a long period of migration.  相似文献   

10.
The origin of a unique vacuole (PSV), which was specifically present in the prespore cell of the cellular slime mold Dictyostelium discoideum. was investigated electronmicroscopically. A considerable number of PSV-mitochondrion complexes was found in the intermediate fraction between a pure PSV and a pure mitochondria fractions, which were obtained by isopicnic centrifugation of cellular components of the prespore cell. Similar complexes were also observed in the differentiating prespore cells. Furthermore, the activity of succinic dehydrogenase, a typical mitochondrial enzyme was found cytochemically to be localized in the PSV as well as in mitochondria. From these results, it was concluded that the PSV was formed from the mitochondrion through some intermediate steps.  相似文献   

11.
张敏  谭宁  侯连生 《动物学报》2007,53(2):278-284
利用电镜酶细胞化学方法,观察盘基网柄菌细胞分化和凋亡过程中酸性磷酸酶的变化。在细胞丘阶段,酶反应颗粒出现在线粒体内自噬空泡内,随着内自噬空泡的逐渐增大,线粒体内的酶反应颗粒逐渐增多,线粒体内嵴结构不断破坏,直至遍布整个空泡化的线粒体内;当细胞发育至前孢子细胞时,由于嵴结构被完全破坏,酶反应颗粒主要集中在前孢子细胞空泡的单层膜上,空泡化的线粒体内酶反应颗粒逐渐消失。在凋亡的柄细胞中,自噬泡内酶反应强烈,凋亡中期的前柄细胞的细胞核中出现酶反应颗粒,均匀分布在细胞核中,直至细胞核与自噬泡融合。在孢子细胞外被与质膜间也观察到非溶酶体酸性磷酸酶。所得结果证实:线粒体内自噬小泡具有消化功能;自噬泡内酶活性与细胞器消亡有关;细胞核中的酸性磷酸酶可能作为一种非溶酶体酸性磷酸酶参与细胞核中核蛋白的脱磷酸化过程,与发育相关基因表达有关  相似文献   

12.
Six monoclonal antibodies were isolated which react with common antigens shared by multiple glycoconjugate species in the cellular slime mold Dictyostelium discoideum. Based on competition of antibody binding by glycopeptides and simple sugars, and inhibition of antibody binding by antigen pretreatment with Na periodate, it is argued that at least five of the six antibodies recognize epitopes which contain carbohydrate. These epitopes are consequently referred to as glycoantigens (GAs).Three of the GAs are expressed during growth and throughout the developmental cycle, but are eventually enriched in prestalk and stalk cells. The remaining three are expressed only during and/or after aggregation and are exclusively expressed or highly enriched in prespore cells and spores. These conclusions are derived from Western blot immunoanalysis of purified cell types, immunofluorescence, and EM immunocytochemistry.The two GAs found only in prespore cells appear to be exclusively enclosed within prespore vesicles. The third GA of this type, which is only enriched in prespore cells compared to prestalk cells, is also found in other vesicle types as well as on the cell surface.Two of the GAs enriched in prestalk cells are initially found in all cells of the slug. They are undetectable in spores and prominent in stalk cells. The third GA, though found in the interiors of both prestalk and prespore cells, is enriched on the cell surface of prestalk cells.The chief characteristics of expression of four of these GAs are conserved in the related species D. mucoroides. This species is characterized by continuous trans differentiation of prespore cells into prestalk cells. This shows that the prespore cells maintain specific mechanisms for turning over their cell type specific GAs and that prestalk cells express a specific mechanism for inducing at least one of their cell-type specific GAs.These observations identify specific carbohydrate structures (as GAs) whose synthesis, subsequent localization and turnover are developmentally regulated. The exclusive association of two GAs with prespore vesicles identifies these GAs as markers for this organelle and raises questions regarding the functional significance of this association. The restricted cell surface localization of the other four GAs, together with data from cell adhesion studies, suggest the possibility of a potential role for these GAs in intercellular recognition leading to cell sorting.This paper is dedicated to the memory of the late Daniel McMahon.  相似文献   

13.
The corpora allata exbibit cycles of synchronous cell growth and atrophy during ovarian cycles in adult females of the cockroach Diploptera punctata. In the present report, the process of synchronous autophagy of organelles which results in cellular atrophy was investigated. In general, unwanted organelles were sequentially sequestered by several different mechanisms and then targeted for destruction. Autophagy was initiated on day 4 when corpus allatum cells were largest and most actively synthesizing juvenile hormone. The first sign of the initiation of autophagy was aggregation of ribosomes in an isolation membrane. By day 5, many organelles were isolated in the autophagic vacuoles. The ribosomecontaining vacuoles were wrapped by flattened stacks of Golgi cisternae to form conspicuous whorl-like autophagosomes. This is a previously undescribed type of autophagic vacuole with the entire complex of Golgi cisternae forming part of the autophagic membranes. Smooth endoplasmic reticulum was wrapped into membranous autophagic vacuoles with concentric arrays of doubel membranes. Plasma membrane was invaginated and then isolated in a multivesicular body. These three different types of isolated vacuoles did not show acid phosphatase activity as indicated by histochemical staining with -glycerophosphate as substrate. Subsequently, these autophagosomes fused with each other and with 1° or 2° lysosomes to form giant autophagolysosomes. Some mitochondria appeared to have coalesced directly into autophagolysosomes. Golgi complexes were evident during this period; they actively participated in making lysosomal enzymes. Cytoskeletons were frequently observed in the vicinity of autophagic vacuoles and were presumably involved in the transport of the vacuoles. As a result of lysosomal degradation lipofuscins and dense bodies were frequently observed by days 9–12 indicating atrophy of corpus allatum cells. Structural parameters, especially those present early in autophagy, such as the isolation membrane, ribosome-containing vacuoles and whorl-like autophagosomes, can be used to search for potential growth regulators responsible for the induction of autophagy, of the corpora allata, and the subsequent termination in juvenile hormone synthesis.  相似文献   

14.
D. S. Domozych 《Protoplasma》1999,206(1-3):41-56
Summary Closterium acerosum possesses a well-defined, mucilage-secretory mechanism consisting of up to 100 Golgi bodies, two distinct vacuolar networks, and an active cytoplasmic-streaming network located in the cell periphery. Five different sodium-affecting agents were applied to actively secreting cells in order to determine the role, if any, of Na+ on this secretory mechanism. Significant effects to the endomembrane system and actin cytoskeleton were noted upon treatment with the Na+-specific ionophores monensin and SQl-Et. In particular, the following alterations were noted: incurling of Golgi cisternae and the formation of circular cisternal profiles at the trans face, swelling of the cis-medial cisternae, and dissociation of the Golgi body from the internal cytoplasm to the peripheral cytoplasmic zones. Immunogold labeling with a mucilage-specific polyclonal antibody reveals that mucilage production is diminished during longer ionophore treatments. Likewise, both the polar and peripheral vacuoles disintegrate into a series of smaller vacuoles. Cytoplasmic streaming ceases and the normal actin network of the peripheral cytoplasm transforms into irregularly spaced fibrillar bundles. Finally, multilaminate structures appear at the plasma membrane. No cytological effects could be observed with the Na+-channel blockers or Na+-current transducers QX-14, tetrodotoxin, or amiloride.Abbreviations DIC differential interference contrast - GA Golgi apparatus - LM light microscopy - TEM transmission electron microscopy - TGN trans Golgi network - WHM Woods Hole medium - DMSO dimethylsulfoxide  相似文献   

15.
The superficial squamous cells of rat transitional epithelium are limited, on their luminal face, by an asymmetrically thickened membrane. Patches of similar thick membrane are found in the walls of the Golgi cisternae and it is suggested that the Golgi system is the site of assembly of the thick plasma membrane. This implies membrane flow from the Golgi apparatus to the cell surface, and there is indirect evidence that the membrane is transported in the form of fusiform vacuoles, derived from the Golgi cisternae, which fuse with, and become part of, the free cell membrane. Uptake of injected Imferon shows that similar, large, thick-walled vacuoles may be formed by invagination of the free cell surface. Some of these vacuoles are subsequently transformed into multivesicular bodies and autophagic vacuoles. The formation of other large heterogeneous bodies is described, and some of these are shown to have acid phosphatase activity.  相似文献   

16.
Changes in fine structures during the development of the cellular slime molds D. discoideum and D. mucoroides were studied, with emphasis on the regional differentiation between the prestalk and prespore cells of the slug. Cells in the prestalk region were in closer contact than those in the prespore region. Some differences were also noticed in the structure of plasma membrane between the two types of cells. An endoplasmic reticulum, vesicle, autophagic vacuole, and cytoplasmic fibril were found more abundantly in the prestalk cell than in the prespore cell. In the prespore cells there were observed a number of prespore specific vacuoles of ca. 0.6 μ diameter which consist of membraneous and fibrous structures. The vacuole was never found in the prestalk cells, and was a sole structure that existed only in one of the two types of cells. A possible function of such a vacuole was discussed in relation to spore differentiation. No differences in structure and distribution of mitochondria and crystal bodies were noticed between the prestalk and prespore cells, although these structures underwent considerable changes during the development. The nucleolus underwent considerable structual differentiation between the prestalk and prespore cells as well as during the course of development.  相似文献   

17.
Sites of lipoprotein particles in normal rat hepatocytes   总被引:14,自引:9,他引:5       下载免费PDF全文
Very low density lipoprotein (VLDL) particles are packaged by the Golgi apparatus into vacuoles which move to the plasma membrane and empty the particles into the space of Disse, via exocytosis. Traditionally, all lipoprotein-containing cisternae and vacuoles are thought to be parts of this pathway. Observations reported here demonstrate that there is a second population of lipoprotein-containing cisternae and vacuoles. This population is part of GERL, an organelle we consider to be a specialized hydrolase-rich region of the endoplasmic reticulum (ER). To our knowledge, this is the first systematic study of GERL in normal rat hepatocytes.  相似文献   

18.
H Fujita  H Okamoto 《Histochemistry》1979,64(3):287-295
The fine structural localization of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) was examined in pancreatic acinar cells of fasting and fed mice. The results were not affected by these conditions. TPPase activity was positive in two and sometimes three cisternae of the inner Golgi lamellae as well as in the condensing vacuoles of the trans area, but negative in the rigid lamellae and small vesicles of the trans area. AcPase activity was demonstrated in two and sometimes three cisternae of inner Golgi lamellae, condensing vacuoles, rigid lamellae, lysosomes and smooth or coated vesicles in the trans area. The inner Golgi lamellae and the condensing vacuoles were positive for both enzyme activities. From these facts, the lysosome is considered to be formed not only in the GERL system but also through the rough endoplasmic reticulum-Golgi apparatus route. It is reasonable to consider that Novikoff's GERL is not independent from the Golgi apparatus but represents a part of this organelle.  相似文献   

19.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

20.
ABSTRACT. Fine structural studies of a specialized vesicle system associated with the endoplasmic reticulum (ER) of exo-erythrocytic Plasmodium berghei suggest that this system may be the equivalent of a Golgi apparatus. Patches of ER, randomly distributed in the cytoplasm of developing parasites, are formed of smooth and ribosome-studded cisternae intermingled with each other. The vesicle systems are located between as well as at the edges of ER aggregates and appear to be in different stages of budding from the cisternae. Prolonged osmication reveals distinct staining of the nuclear envelope and ER of the parasites as well as part of the Golgi apparatus of the hepatocytes. However, the small vesicles associated with the parasite's ER are unstained, as are the coated vesicles in the Golgi region of the liver cell. These sites in the parasite cytoplasm seem comparable to the concave surface of the Golgi apparatus in liver cells. The pinched-off vesicles fuse with others to form the prominent peripheral vacuolization characteristic of the nearly mature exo-erythrocytic form. The formation of these peripheral vacuoles and their subsequent fusion with the parasite membrane may be an exocytosis mechanism supplying the rapidly expanding parasite with new plasma membrane material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号