首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine East Indies: diversity and speciation   总被引:3,自引:0,他引:3  
Aim To discuss the impact of new diversity information and to utilize recent findings on modes of speciation in order to clarify the evolutionary significance of the East Indies Triangle. Location The Indo‐Pacific Ocean. Methods Analysis of information on species diversity, distribution patterns and speciation for comparative purposes. Results Information from a broad‐scale survey of Indo‐Pacific fishes has provided strong support for the theory that the East Indies Triangle has been operating as a centre of origin. It has become apparent that more than two‐thirds of the reef fishes inhabiting the Indo‐Pacific are represented in the Triangle. An astounding total of 1111 species, more than are known from the entire tropical Atlantic, were reported from one locality on the small Indonesian island of Flores. New information on speciation modes indicates that the several unique characteristics of the East Indian fauna are probably due to the predominance of competitive (sympatric) speciation. Main conclusions It is proposed that, within the East Indies, the high species diversity, the production of dominant species, and the presence of newly formed species, are due to natural selection being involved in reproductive isolation, the first step in the sympatric speciation process. In contrast, speciation in the peripheral areas is predominately allopatric. Species formed by allopatry are the direct result of barriers to gene flow. In this case, reproductive isolation may be seen as a physical process that does not involve natural selection. Allopatric species formation often takes millions of years, while the sympatric process is generally much faster. Following species formation, dispersal from the East Indies appears to take place according to the centrifugal hypothesis.  相似文献   

2.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

3.
We synthesize the evolutionary implications of recent advances in the fields of phylogeography, biogeography and palaeogeography for shallow‐water marine species, focusing on marine speciation and the relationships among the biogeographic regions and provinces of the world. A recent revision of biogeographic provinces has resulted in the recognition of several new provinces and a re‐evaluation of provincial relationships. These changes, and the information that led to them, make possible a clarification of distributional dynamics and evolutionary consequences. Most of the new conclusions pertain to biodiversity hotspots in the tropical Atlantic, tropical Indo‐West Pacific, cold‐temperate North Pacific, and the cold Southern Ocean. The emphasis is on the fish fauna, although comparative information on invertebrates is utilized when possible. Although marine biogeographic provinces are characterized by endemism and thus demonstrate evolutionary innovation, dominant species appear to arise within smaller centres of high species diversity and maximum interspecies competition. Species continually disperse from such centres of origin and are readily accommodated in less diverse areas. Thus, the diversity centres increase or maintain species diversity within their areas of influence, and are part of a global system responsible for the maintenance of biodiversity over much of the marine world.  相似文献   

4.
The role of speciation processes in shaping current biodiversity patterns represents a major scientific question for ecologists and biogeographers. Hence, numerous methods have been developed to determine the geography of speciation based on co‐occurrence between sister‐species. Most of these methods rely on the correlation between divergence time and several metrics based on the geographic ranges of sister‐taxa (i.e. overlap, asymmetry). The relationship between divergence time and these metrics has scarcely been examined in a spatial context beyond regression curves. Mapping this relationship across spatial grids, however, may unravel how speciation processes have shaped current biodiversity patterns through space and time. This can be particularly relevant for coral reef fishes of the Indo‐Pacific since the origin of the exceptional concentration of biodiversity in the Indo‐Australian Archipelago (IAA) has been actively debated, with several alternative hypotheses involving species diversification and dispersal. We reconstructed the phylogenetic relationships between three species‐rich families of coral reef fish (Chaetodontidae, Labridae, Pomacentridae) and calculated co‐occurrence metrics between closely related lineages of those families. We demonstrated that repeated biogeographic processes can be identified in present‐day species distribution by projecting co‐occurrence metrics between related lineages in a geographical context. Our study also evidence that sister‐species do not co‐occur randomly across the Indo‐Pacific, but tend to overlap their range within the IAA. We identified the imprint of two important biogeographic processes that caused this pattern in 48% of the sister‐taxa considered: speciation events within the IAA and repeated divergence between the Indian and Pacific Ocean, with subsequent secondary contact in the IAA.  相似文献   

5.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

6.
The brown algal genus Padina (Dictyotales, Phaeophyceae) is distributed worldwide in tropical and temperate seas. Global species diversity and distribution ranges, however, remain largely unknown. Species‐level diversity was reassessed using DNA‐based, algorithmic species delineation techniques based on cox3 and rbcL sequence data from 221 specimens collected worldwide. This resulted in estimates ranging from 39 to 61 putative species (ESUs), depending on the technique as well as the locus. We discuss the merits, potential pitfalls, and evolutionary and biogeographic significance of algorithmic species delineation. We unveil patterns whereby ESUs are in all but one case restricted to either the Atlantic or Indo‐Pacific Ocean. Within ocean basins we find evidence for the vast majority of ESUs to be confined to a single marine realm. Exceptions, whereby ESUs span up to three realms, are located in the Indo‐Pacific Ocean. Patterns of range‐restricted species likely arise by repeated founder events and subsequent peripatric speciation, hypothesized to dominate speciation mechanisms for coastal marine organisms in the Indo‐Pacific. Using a three‐gene (cox3, psaA and rbcL), relaxed molecular clock phylogenetic analysis we estimated divergence times, providing a historical framework to interpret biogeographic patterns.  相似文献   

7.
The diversity on coral reefs has long captivated observers. We examine the mechanisms of speciation, role of ecology in speciation, and patterns of species distribution in a typical reef‐associated clade—the diverse and colorful Calcinus hermit crabs—to address the origin of tropical marine diversity. We sequenced COI, 16S, and H3 gene regions for ~90% of 56 putative species, including nine undescribed, “cryptic” taxa, and mapped their distributions. Speciation in Calcinus is largely peripatric at remote locations. Allopatric species pairs are younger than sympatric ones, and molecular clock analyses suggest that >2 million years are needed for secondary sympatry. Substantial niche conservatism is evident within clades, as well as a few major ecological shifts between sister species. Color patterns follow species boundaries and evolve rapidly, suggesting a role in species recognition. Most species prefer and several are restricted to oceanic areas, suggesting great dispersal abilities and giving rise to an ocean‐centric diversity pattern. Calcinus diversity patterns are atypical in that the diversity peaks in the west‐central oceanic Pacific rather than in the Indo‐Malayan “diversity center.” Calcinus speciation patterns do not match well‐worn models put forth to explain the origin of Indo‐West Pacific diversity, but underscore the complexity of marine diversification.  相似文献   

8.
On land, biodiversity hotspots typically arise from concentrations of small‐range endemics. For Indo‐Pacific corals and reef fishes, however, centres of high species richness and centres of high endemicity are not concordant. Moreover ranges are not, on average, smaller inside the Central Indo‐Pacific (CI‐P) biodiversity hotspot. The disparity between richness and endemicity arises because corals and reef fishes have strongly skewed range distributions, with many species being very widespread. Consequently, the largest ranges overlap to generate peaks in species richness near the equator and the CI‐P biodiversity hotspot, with only minor contributions from endemics. Furthermore, we find no relationship between the number of coral vs. fish endemics at locations throughout the Indo‐Pacific, even though total richness of the two groups is strongly correlated. The spatial separation of centres of endemicity and biodiversity hotspots in these taxa calls for a two‐pronged management strategy to address conservation needs.  相似文献   

9.
Two‐wing flyingfish (Exocoetus spp.) are widely distributed, epipelagic, mid‐trophic organisms that feed on zooplankton and are preyed upon by numerous predators (e.g., tunas, dolphinfish, tropical seabirds), yet an understanding of their speciation and systematics is lacking. As a model of epipelagic fish speciation and to investigate mechanisms that increase biodiversity, we studied the phylogeny and biogeography of Exocoetus, a highly abundant holoepipelagic fish taxon of the tropical open ocean. Morphological and molecular data were used to evaluate the phylogenetic relationships, species boundaries, and biogeographic patterns of the five putative Exocoetus species. We show that the most widespread species (E. volitans) is sister to all other species, and we find no evidence for cryptic species in this taxon. Sister relationship between E. monocirrhus (Indo‐Pacific) and E. obtusirostris (Atlantic) indicates the Isthmus of Panama and/or Benguela Barrier may have played a role in their divergence via allopatric speciation. The sister species E. peruvianus and E. gibbosus are found in different regions of the Pacific Ocean; however, our molecular results do not show a clear distinction between these species, indicating recent divergence or ongoing gene flow. Overall, our phylogeny reveals that the most spatially restricted species are more recently derived, suggesting that allopatric barriers may drive speciation, but subsequent dispersal and range expansion may affect the distributions of species.  相似文献   

10.
Aim This study aims to initially explore the mode of speciation in Indo‐West Pacific Conus. Location The Indo‐West Pacific island arc, Indian and Pacific Oceans. Methods Relating evolutionary divergence in a molecular phylogeny [T.F. Duda & S.R. Palumbi (1999) Proceedings of the National Academy of Science USA, 96 , 10272] using node height with modern range extents as a possible measure of allopatric or sympatric speciation following that of T.G. Barraclough, A.P. Vogler & P.H. Harvey [(1999) Evolution of Biological Diversity. Oxford University Press, Oxford] models of sympatric and allopatric speciation. Results The analysis seems to indicate that the relationship of sympatry with node height is not informative. Species that have diverged quite recently show 100% sympatry with the sister species. A clearer signal of recent allopatric speciation is observed in species whose distribution is at the edge of the Indian and Pacific Ocean basins. In the widely distributed Conus ebraeus clade, the relationships of node heights and range extents of the member species support a key prediction of sympatric speciation. In highly ecologically specialized species, there is a smaller degree of sympatry than those species that are less specialized. Main conclusions The modes of speciation models presented in this study are not informative. This suggests that there had been large and possibly rapid changes in range size after speciation in the various clades. This could have been due to the fact that the wide dispersal life‐history strategy in the genus had been largely conserved in Conus evolution. There is evidence of sympatric and parapatric speciation in one Conus clade. Overall, the patterns of phylogeny and range distribution when related to the timing of speciation lend circumstantial support to a Neogene centre of origin hypothesis but not to speciation on the Pacific Plate. Speciation is likely to have been associated with the Tethys Sea closure event, with rapid speciation occurring after closure.  相似文献   

11.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

12.
Botanists have long considered the origins of the Hawaiian flora in terms of long‐distance dispersal from particular source areas. We extensively reviewed phylogenetic studies of the Hawaiian angiosperm flora to determine the most likely region of origin for each lineage from a defined set of source areas. We also evaluated dispersal modes of each lineage to assess whether certain dispersal modes are associated with a given source area. The largest source category was Widespread (involving related taxa that extend across more than one region), although many of these comprised native non‐endemic species, and accounted for little of the total species diversity (after accounting for in situ speciation). The next largest source regions were Indo‐Malayan and Neotropical. Comparatively few lineages originated from the East Asian region, although these include the single largest lineage. Lineages originating in the Indo‐Malayan region predominantly arrived via Pacific Islands, whereas dispersal from all other regions appears to have been mostly direct. Compared with previous analyses, we found a higher proportion of lineages originating in the Neotropics and temperate North America. Widespread origins were positively associated with dispersal via flotation on water, whereas other origins were associated with dispersal by birds, either through internal transport or external adhesion. We identified thirty‐one potential cases of dispersal out of Hawaii to other islands. Our assessment is complicated by lineages with ancient origins, with further complications likely stemming from hybridization events. Overall, numerous lineages including some distinctive endemic genera have not had sufficient phylogenetic study to determine an origin.  相似文献   

13.
To determine how historical processes, namely speciation, extinction, and dispersal, have contributed to regional species diversity patterns across the marine tropics, we examined the biogeographical history of a circumtropical genus of intertidal gastropods. A species-level phylogeny of Nerita, representing approximately 87% of extant species, was developed from 1608bp of mitochondrial (COI and 16S) and nuclear (ATPSalpha) markers. Phylogenetic relationships generally corresponded to prior classifications; however, comprehensive sampling revealed a number of previously undetected ESUs. Using the resulting tree as a framework, we combined geographical distributions and fossil evidence to reconstruct ancestral ranges, produce a time-calibrated chronogram, and estimate diversification rates. Analyses revealed two monophyletic eastern Pacific+Atlantic (EPA) clades, each of which likely split from an Indo-West Pacific (IWP) sister clade prior to an early Miocene Tethys Seaway closure. More recent diversification throughout the IWP appears to have been driven by both vicariance and dispersal events; EPA diversity has been further shaped by speciation across the Central American Seaway prior to its closure and dispersal across the Atlantic. Despite the latter, inter-regional dispersal has been rare, and likely contributes little to regional diversity patterns. Similarly, infrequent transitions into temperate regions combined with reduced diversification rates may explain low diversity in West and South Pacific clades. Since origination, Nerita diversification appears remarkably constant, with the exception of a lag in the late Eocene-early Oligocene and elevated rates in the late Oligocene-early Miocene. However, a comparison among regions suggested that IWP clades have experienced, on average, higher rates of speciation. Fossil evidence indicates that the EPA likely witnessed greater extinction relative to the IWP. We propose that regional differences in species diversity in Nerita have been largely shaped by differential rates of speciation and extinction.  相似文献   

14.
Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo‐West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef‐building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation‐by‐distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15–21% of the observed genetic variation compared to between‐island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species‐rich Coral Triangle. However, for Ahyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast‐spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale.  相似文献   

15.
Towards a panbiogeography of the seas   总被引:3,自引:0,他引:3  
A contrast is drawn between the concept of speciation favoured in the Darwin–Wallace biogeographic paradigm (founder dispersal from a centre of origin) and in panbiogeography (vicariance or allopatry). Ordinary ecological dispersal is distinguished from founder dispersal. A survey of recent literature indicates that ideas on many aspects of marine biology are converging on a panbiogeographic view. Panbiogeographic conclusions supported in recent work include the following observations: fossils give minimum ages for groups and most taxa are considerably older than their earliest known fossil; Pacific/Atlantic divergence calibrations based on the rise of the Isthmus of Panama at 3 Ma are flawed; for these two reasons most molecular clock calibrations for marine groups are also flawed; the means of dispersal of taxa do not correlate with their actual distributions; populations of marine species may be closed systems because of self‐recruitment; most marine taxa show at least some degree of vicariant differentiation and vicariance is surprisingly common among what were previously assumed to be uniform, widespread taxa; mangrove and seagrass biogeography and migration patterns in marine taxa are best explained by vicariance; the Indian Ocean and the Pacific Ocean represent major biogeographic regions and diversity in the Indo‐Australian Archipelago is related to Indian Ocean/Pacific Ocean vicariance; distribution in the Pacific is not the result of founder dispersal; distribution in the south‐west Pacific is accounted for by accretion tectonics which bring about distribution by accumulation and juxtaposition of communities; tectonic uplift and subsidence can directly affect vertical distribution of marine communities; substantial parallels exist between the biogeography of terrestrial and marine taxa; biogeographically and geologically composite areas are tractable using panbiogeographic analysis; metapopulation models are more realistic than the mainland/island dispersal models used in the equilibrium theory of island biogeography; and regional biogeography is a major determinant of local community composition. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 675–723.  相似文献   

16.
The relationship between biodiversity and habitat productivity has been a fundamental topic in ecology. Although the relationship between these parameters may exhibit different shapes, the unimodal shape has been frequently encountered. The decrease in diversity at high productivity has usually been attributed to competitive exclusion. We suggest that evolutionary history and dispersal limitation may be even more important in shaping the diversity–productivity relationship. On a global scale, unimodal diversity–productivity relationships dominate in temperate regions, whereas positive relationships are more common in the tropics. This difference can be accounted for by contrasting evolutionary history. Temperate regions have smaller species pools for productive habitats since these habitats have been scarce historically for speciation, while the opposite is true for the tropics. In addition, dispersal within a region may limit diversity either due to the lack of dispersal syndromes at low productivity or the low number of diaspores at high productivity. Thereafter, biotic interactions (competition and facilitation) can shape the relationship. All these processes can act independently or concurrently. We recommend that the common approach to examining empirical diversity–environmental relationships should start with the role of large‐scale processes such as evolutionary history and dispersal limitation, followed by influences associated with ecological interactions.  相似文献   

17.
Aim Ostreopsis is a benthic and epiphytic dinoflagellate producing potent toxins widespread in tropical and warm temperate coastal areas world‐wide. We tested the hypothesis that as it is benthic, it would show distinct biogeographical patterns in comparison with planktonic species. Here, we analyse sequence variability in ribosomal DNA markers to provide the first phylogeographical study of this toxic benthic dinoflagellate. Location Mediterranean Sea, Atlantic Ocean, Pacific Ocean. Methods Ribosomal DNA sequence data from partial nuclear LSU (D1/D2 domains) and 5.8S genes and non‐coding internal transcribed spacer (ITS) regions were obtained from 82 isolates of Ostreopsis species, collected at 26 localities throughout the world. Molecular sequence data were analysed using maximum parsimony, maximum likelihood and Bayesian methods for phylogenetic inference. A statistical parsimony network was obtained based on concatenated LSU and 5.8S rDNA–ITS region sequences of the Mediterranean/Atlantic Ostreopsis cf. ovata isolates to infer haplotype distribution over their geographical range. Light epifluorescence microscopy analyses were performed on cultured and field Ostreopsis material for taxonomic identification, while laboratory experiments for encystment induction were carried out on selected O. cf. ovata isolates. Toxin assays of Ostreopsis species isolates were carried out using the haemolytic‐based method. Results Analyses based on single and concatenated ribosomal genes gave substantially similar results. The rDNA phylogeny revealed different clades corresponding to different species within the genus Ostreopsis. In the species O. cf. ovata, different genetic lineages were correlated with macrogeographical distribution. A network of haplotypes inferred from the Atlantic and Mediterranean isolates of O. cf. ovata revealed that these two areas might host a single panmictic population. The Atlantic/Mediterranean population of O. cf. ovata was differentiated considerably from the Indo‐Pacific populations. Other species of Ostreopsis were found, but they turned out to be restricted to just one of the two main warm‐water oceanic basins, the Mediterranean/Atlantic and the Indo‐Pacific. Main conclusions Ostreopsis cf. ovata was found to be widely dispersed throughout the coastal areas of tropical and some warm temperate seas. In the Atlantic/Mediterranean region it may constitute a panmictic population that is highly distinct from Indo‐Pacific populations. Ostreopsis cf. siamensis was found only in the Mediterranean Sea, and strains identified as Ostreopsis lenticularis and Ostreopsis labens were found only in the Indo‐Pacific region.  相似文献   

18.
Aim Most reef fishes are site‐attached, but can maintain a broad distribution through their highly dispersive larval stage. The whitetip reef shark (Triaenodon obesus) is site‐attached, yet maintains the largest Indo‐Pacific distribution of any reef shark while lacking the larval stage of bony (teleost) fishes. Here we use mitochondrial DNA (mtDNA) sequence data to evaluate the enigma of the sedentary reef shark that maintains a distribution across two‐thirds of the planet. Location Tropical Pacific and Indian Oceans. Methods We analysed 1025 base pairs of the mtDNA control region in 310 individuals from 25 locations across the Indian and Pacific Oceans. Phylogeographic and population genetic analyses were used to reveal the dispersal and recent evolutionary history of the species. Results We resolved 15 mtDNA control region haplotypes, but two comprised 87% of the specimens and were detected at nearly every location. Similar to other sharks, genetic diversity was low (h = 0.550 ± 0.0254 and π = 0.00213 ± 0.00131). Spatial analyses of genetic variation demonstrated strong isolation across the Indo‐Pacific Barrier and between western and central Pacific locations. Pairwise ΦST comparisons indicated high connectivity among archipelagos of the central Pacific but isolation across short distances of contiguous habitat (Great Barrier Reef) and intermittent habitat (Hawaiian Archipelago). In the eastern Pacific only a single haplotype (the most common one in the central Pacific) was observed, indicating recent dispersal (or colonization) across the East Pacific Barrier. Main conclusions The shallow haplotype network indicates recent expansion of modern populations within the last half million years from a common ancestor. Based on the distribution of mtDNA diversity, this began with an Indo‐West Pacific centre of origin, with subsequent dispersal to the Central Pacific and East Pacific. Genetic differences between Indian and Pacific Ocean populations are consistent with Pleistocene closures of the Indo‐Pacific Barrier associated with glacial cycles. Pairwise population comparisons reveal weak but significant isolation by distance, and notably do not indicate the high coastal connectivity observed in other shark species. The finding of population structure among semi‐contiguous habitats, but population connectivity among archipelagos, may indicate a previously unsuspected oceanic dispersal behaviour in whitetip reef sharks.  相似文献   

19.
Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo‐Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.  相似文献   

20.
The Tethys Ocean existed between the continents of Gondwana and Laurasia from the Triassic to the Pliocene. Analyses of multiple biogeographic and phylogenetic histories reveal that the subsequent breakup of the Tethys greatly influenced the distributions of many species. The ancestral Tethyan realm broke into five biogeographic provinces, including the present‐day East Pacific, West Atlantic, East Atlantic, Mediterranean Sea, and Indo‐West Pacific. Palaeogeographic maps illustrate the Mesozoic Atlantic opening, the Cenozoic closure of the Tethys, the Messinian Salinity Crisis, the mid‐Miocene closure of the Central American Seaway, and Quaternary geological changes. Further, we consider Cenozoic sea‐level changes and the formation of freshwater habitats. These reconstructions allow assessment of patterns of aquatic diversification for marine and freshwater animals, and comparison of vicariance and dispersal processes. Estimated divergence times indicate that fragmentation of the Tethys was responsible for the vicariant speciation of aquatic animals because these dates are consistent with associated tectonic events. The opening of the Atlantic Ocean during the Cretaceous is responsible for the earliest isolation between the West and East Atlantic. The mid‐Miocene closure of the Tethys, which blocked global equatorial currents, appears to have isolated the Atlantic/Mediterranean Sea and Indo‐West Pacific. Finally, formation of the Isthmus of Panama isolated East Pacific and West Atlantic marine organisms. Dispersals related to the Messinian Salinity Crisis and Quaternary sea‐level changes influenced population structuring. Tethyan changes affected marine habitats, created new freshwater habitats, inland caves and ancient lakes along the Alps and Himalayas, and influenced anchialine caves at the edge of the ancient sea. The extensive new habitats provided opportunities for colonisation and rapid diversification. Future work should focus on testing the biological impact of the series of Tethyan changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号