首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake and storage of L-[3H]norepinephrine at various stages of development was examined in homogenates of rat brain. For the adult animal, active uptake accounted for 80 per cent of the total uptake. At 14 days of gestation, no active uptake was demonstrable At 18 days of gestation, saturable uptake of L-[3H]norepinephrine with a Km of 3 × 10 ?7m was first demonstrable; the Km value did not vary during subsequent development. The Vmax. of uptake increased five-fold between 18 days of gestation and 28 days postnatally, at which stage it was the same as the adult value. The development of saturable uptake paralleled but preceded the increase in endogenous norepinephrine. When homogenates were incubated with l -[3H]norepinephrine and subjected to centrifugation on linear sucrose gradients, there was a peak of tritium in the synaptosomal fractions; the magnitude of the peak increased with maturation of the brain. The increase in the peak of tritium paralleled the increase in particulate LDH activity and was distinct from the peak of MAO activity. Desipramine, a compound that blocks the initial uptake of norepinephrine, first exhibited inhibition of uptake at 19 days of gestation; the degree of inhibition did not vary during subsequent development. In contrast, reserpine, a compound which inhibits the intra-neuronal storage of norepinephrine, exhibited a progressive increase of inhibition with maturation of the brain at and subsequent to 19 days of gestation.  相似文献   

2.
The depolarization-induced, calcium-dependent release of [3H]ACh from hippocampal synaptosomes was studied in a superfusion system. Release increased, with increasing depolarization. Barium and strontium effectively substituted for calcium during the depolarization, but magnesium inhibited the release. Releasable [3H]ACh is derived from the sodium-dependent component of the [3H]choline uptake which points out the physiologic importance of sodium-dependent choline transport. It is concluded that [3H]ACh release in this system has the same properties as neurotransmitter release in many other systems. Previous studies have shown that treatments which alter the activity of cholinergic neurons in vivo result in parallel changes in sodium-dependent choline uptake in vitro. When synaptosomes were utilized from animals treated to reduce cholinergic activity, there was a reduced release following the reduced uptake. Conversely, when synaptosomes were taken from animals treated to increase sodium-dependent choline uptake, there was an increase in the release. It is concluded that the changes in sodium-dependent choline uptake in vitro consequent to changes in neuronal activity in vivo result in parallel changes in releasable ACh. A comparison was made between the effect of a number of ions and agents on release and their effect on the in vitro, depolarization-induced activation of sodium-dependent choline uptake. Barium and strontium, ions which substitute for calcium in the release process, support the in vitro activation of uptake. Vinblastine and Bay a 1040, compounds which block release, prevented the in vitro activation of sodium-dependent choline uptake. However, magnesium blocked release in a dose-dependent manner, but did not block the activation of uptake in vitro. Rather, magnesium substituted for calcium and supported the activation of uptake in a dose-dependent fashion. It is concluded that acetylcholine release is not necessary for the activation of choline uptake.  相似文献   

3.
4.
5.
—The concentration of noradrenaline was studied in the proximal colon of the guinea-pig, where intrinsic adrenergic neurons are present in the myenteric plexus. The noradrenaline content is higher than in the myenteric plexus of other parts of the alimentary tract. After extrinsic denervation of the colon, about 25% of the original content of noradrenaline remains in the myenteric plexus, and this is considered to be the amount due to the intrinsic adrenergic neurons; also a substantial noradrenaline uptake activity is still detectable. On the other hand, in the part of the wall formed by circular muscle-submucous plexus-submucosa-mucosa, which has control values close to those of the ileum, extrinsic denervation causes a nearly complete depletion of noradrenaline. This is considered as evidence that the intrinsic neurons do not project to the circular musculature, or the submucosa or mucosa.  相似文献   

6.
§-Aminolaevulinic acid (§-ALA) is an omega amino acid which can be considered as an analogue of γ-aminobutyric acid (GABA). We have examined the effect of §-ALA on [3H]GABA uptake and release in the synaptosome fraction of rat cerebral cortex and report: (1) High concentrations of §-ALA (0.75-5 mM) stimulated [3H]GABA release very markedly, the stimulation with 1mM and 5mM-§-ALA exceeding the maximum obtainable with unlabelled GABA; (2) Low concentrations of §-ALA (0.1-0.5 mM) produced little stimulation of [3H]GABA efflux, less than that produced by similar concentrations of unlabelled GABA; (3) 0.1 mM-§-ALA reduced the stimulation of [3H]GABA efflux elicited by 55 mM-K+ and the combination of 1 mM-§-ALA and 55mM-K+ produced a lower stimulation of efflux than 1 mM-§-ALA alone; (4) §-ALA inhibits [3H]GABA uptake in a linearly competitive fashion and inhibition is maximal at 0.5 mM-§-ALA. These results are discussed in relation to the neuronal high affinity GABA transport mechanism and inhibition of the synaptosomal Na+ and K+ -dependent ATPase. It is also postulated that §-ALA increases the chloride conductance of the synaptosomal membrane, possibly by acting on presynaptic GABA receptors.  相似文献   

7.
Abstract— The uptake and release of [3H]dopamine was studied in the goldfish retina with the following results: (1) when goldfish retinas were incubated with 2 ± 10-7m -[3H]dopamine for less than 20min and processed for autoradiography. most of the label was associated with dopaminergic terminals that contact certain horizontal cells. Biochemical analysis showed that > 93% of this label was [3H]-dopamine. (2) [3H]dopamine uptake saturated with increasing dopamine concentration and followed Michaelis-Menten kinetics. This uptake could be explained by a single ‘high-affinity’ mechanism with a Km of 2.61 ± 0.41 ± 10-7m and a Vmax of 66 ± 12 ± 10-12 mol/min/mg protein. (3) [3H]dopamine uptake was temperature-dependent with a temperature coefficient of 1.7 and an energy of activation of 11.4 kcal/mol. (4) The initial rate of uptake was unaffected by the absence of Ca2+ or the presence of Co2+; however, more than 85, uptake was blocked in the absence of external Na+. (5) Neither 1 mm -cyanide nor 5 mm -iodoacetate blocked more than 30% of uptake individually; however, in combination > 70% of uptake was blocked. (6) Centrally acting drugs benztropine and diphenylpyraline inhibited at least 60–70% of [3H]dopamine uptake. (7) [3H]dopamine in the retina could be released by increasing the external K+ concentration. This release was Ca2+ -dependent and was blocked by 10mm -Co2+ or 2Omm -Mg2+. The amount of [3H]dopamine released was not affected by the presence of benztropine, diphenylpyraline or fluphenazine in the incubation medium. These studies add further support for dopamine as a neurotransmitter used by interplexiform cells of the goldfish retina.  相似文献   

8.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

9.
Abstract— The incorporation in vivo of 32P1 was significantly increased in all glycerophosphatide of preparations of denervated muscle membrane in frogs. There was no increase in incorporation of 32P1 into sphingomyelin. Disuse induced by tenotomy did not significantly increase incorporation of 32P1 into phospholipids of the muscle membrane. The phospholipid content of muscle membranes remained unchanged as a result of denervation or tenotomy. Denervation produced an increase in the incorporation of [2-3H]glycerol into all glycerophosphatides in parallel with the increase in 32P1 incorporation. Although the stimulated incorporation of 32P1 was increased in the regions of the muscle membrane rich in endplates, the most marked effect was in the endplate-poor region where activity in phosphatidylserine was most markedly increased.  相似文献   

10.
Rat pineal organs maintained in organ culture converted [14C]tryptophan to [14C]serotonin and [14C]melatonin. The synthesis of both indoles was stimulated by the presence of norepinephrine or dibutyryl adenosine 3′,5′-monophosphate. This effect of norepinephrine could be blocked by the α-adrenergic blocking drug, propranolol, but was not modified by the a-adrenergic blocking agent, phenoxybenzamine. Neither blocking agent modified the pineal response to dibutyryl adenosine 3′,5′-monophosphate. Unlike dibutyryl adenosine 3′,5′-monophosphate, the naturally occurring adenosine phosphates did not stimulate synthesis of [14C]melatonin in vitro.  相似文献   

11.
Abstract— Although biochemical and electron microscopic evidence has shown that RNA molecules may be found within axons, the origin of this RNA is not known. In order to determine if the RNA found in axons is synthesized in the nerve cell body and axonally transported, we have studied the effect of the RNA inhibitor cordycepin (3′-deoxyadenosine) on the retinal synthesis and axonal migration of radioactive RNA. Ten μg of cordycepin was injected into the right eye of 11 fish and 3 h later [3H]uridine was injected into the same eye. Twelve control fish were injected with [3H]uridine only and all fish were sacrificed 6 days later. Results of RNA extraction of retina and tecta showed that cordycepin decreased retinal RNA synthesis by approx 24%, while inhibiting the amount of [3H]RNA appearing in the contralateral tectum by 74%. Since the transport of RNA precursors was depressed by only 50%, (significantly different from the effect on RNA, P < 0.01) it seems unlikely that the action of cordycepin in decreasing tectal [3H]RNA levels was due solely to a decrease in the availability of labeled precursors for tectal RNA synthesis. For the purpose of blocking tectal RNA synthesis, 200 μg of cordycepin was injected intracranially several days after the intraocular injection of [3H]uridine. This route of cordycepin administration failed to significantly block the appearance of [3H]RNA in the tectum, suggesting that at least some of the [3H]RNA in the tectum was synthesized before arrival in the tectum itself. To be sure that cordycepin itself was not being transported, we injected cordycepin into the right eye of fish and 5 days later, injected fish intracranially with [3H]uridine. Autoradiograms were prepared and grains were counted over the fiber layers of left (experimental) and right (control) tecta. No significant difference was observed in the number of grains of left vs right tecta indicating that cordycepin itself is not axonally transported. These experiments support earlier findings from our laboratory which suggest that RNA may be axonally transported in goldfish optic fibers.  相似文献   

12.
—The urinary excretion of labelled metabolites was measured in dogs which had been injected intravenously or intraventricularly with [3H]norepinephrine or [14C]dopamine. [3H]Norepinephrine injected by either route produced more labelled 3-methoxy-4-hydroxy-phenylglycol than 3-methoxy-4-hydroxymandelic acid, as did [14C]dopamine after intravenous administration. In contrast, following the intraventricular injection of [14C]dopamine, more [14C]3-methoxy-4-hydroxymandelic acid was formed than [14C]3-methoxy-4-hydroxyphenylglycol. These observations suggest that the metabolism of exogenously-administered and endogenously-formed norepinephrine may proceed through different routes and that the predominant metabolite of norepinephrine in canine brain may be 3-methoxy-4-hydroxymandelic acid rather than 3-methoxy-4-hydroxyphenylglycol.  相似文献   

13.
—A rapid accumulation of [3H]GABA occurs in slices of rat cerebral cortex incubated at 25° or 37° in a medium containing [3H]GABA. Tissue medium ratios of almost 100:1 are attained after a 60 min incubation at 25°. At the same temperature no labelled metabolites of GABA were found in the tissue or the medium. The process responsible for [3H]GABA uptake has many of the properties of an active transport mechanism: it is temperature sensitive, requires the presence of sodium ions in the external medium, is inhibited by dinitrophenol and ouabain, and shows saturation kinetics. The estimated Km value for GABA is 2·2 × 10?5m , and Vmax is 0·115 μmoles/min/g cortex. There is only negligible efflux of the accumulated [3H]GABA when cortical slices are exposed to a GABA-free medium. [3H]GABA uptake was not affected by the presence of large molar excesses of glycine, l -glutamic acid, l -aspartic acid, or β-aminobutyrate, but was inhibited in the presence of l -alanine, l -histidine, β-hydroxy-GABA and β-guanidinopropionate. It is suggested that the GABA uptake system may represent a possible mechanism for the inactivation of GABA or some related substance at inhibitory synapses in the cortex.  相似文献   

14.
ON THE PHOSPHOLIPASE A2 ACTIVITY OF HUMAN CEREBRAL CORTEX   总被引:1,自引:1,他引:0  
Abstract— Preparations of phospholipase Az have been obtained from human cerebral cortex. The enzyme was extracted from acetone-dried tissue and purified by heat-treatment and gel filtration on Sephadex.
Although heating at 65°C or 70°C destroys most of the phospholipase A1 activity that is present in crude extracts, a small proportion remains associated with the A2 activity during these procedures. The heat-treated extracts hydrolyse lecithin in preference to phosphatidyl-ethanolamine but have no action on lysolecithin or neutral lipids. The results suggest that A2 activity and the heat-stable component of A1 may both be due to a single phospholipase A that can hydrolyse diacylglycerophosphatides at either the 2-or the 1-position, to form a mixture of isomeric lysoderivatives.
A molecular weight of 55,000 was calculated for the enzyme.  相似文献   

15.
—Lipid-free extracts of rat and human brain have been prepared and shown to contain phospholipase A1 and A2 activities and a lysophospholipase. The phospholipase Aj activity has pH optima of 4·2 and 4·6 in rat and human brain, respectively; it can be partially purified and isolated in high yields by dialysing the extracts at low pH. The purified preparations hydrolyse the ester bond at the 1-position in lecithin, phosphatidyl-ethanolamine and phosphatidylserine, but have little or no action on triglyceride or cholesterol ester. An assay system for the enzyme is described. Phospholipase A2 activity is optimal at pH 5·5 in rat brain extracts and at pH 5·0 in extracts of human brain. The phospholipase A2 activity of human cerebral cortex is largely unaffected by heating extracts at 70°C for 5 min, whereas this treatment substantially inactivates phospholipase A1 and completely destroys lysophospholipase. Phospholipase A1 is widely distributed in both grey and white matter of human brain and is also present in peripheral nerve. Phospholipase A2 activity is lower than A1 in all regions of the CNS examined so far, and is absent from peripheral nerve. Neither enzyme appears to require Ca2+ but both are inhibited by di-isopropylfluorophosphate (DFP, 2 × 10?6 m) and thus differ from phospholipase A of pancreas. These studies confirm that the phospholipase A1 and A2 activities in brain are due to separate enzymes.  相似文献   

16.
Abstract— Rabbit retinae were homogenized in isotonic sucrose and subjected to differential and density gradient centrifugation. Preliminary electron microscopic examination of some of the fractions indicated that in addition to the subcellular particles usually observed in brain homogenates, the photoreceptor cells gave rise to several characteristic fragments. These included fragmented outer limbs, aggregations of mitochondria from the inner segments, and photoreceptor terminals. Unlike the synaptosomes formed from the conventional type of synapses in the retina, these photoreceptor terminals appeared to sediment mainly in the low speed crude nuclear pellet (P1).
Retinae were incubated with low concentrations of [14C]GABA and/or [3H]dopamine prior to subcellular fractionation and in these experiments the P2 pellet was further fractionated on sucrose density gradients. Analysis of the radioactivity in the fractions showed that labelled GABA was accumulated by osmotically sensitive particles which had the sedimentation characteristics of synaptosomes. The panicles accumulating [3H]dopamine appeared to belong to a different, slightly lighter, population than those accumulating [14C]GABA. It is tentatively suggested that the particles accumulating labelled GABA were synaptosomes because the fractions containing these particles also possessed most of the GAD activity of the gradient. In contrast, GABA-T and MAO activity was found in the dense fractions of the gradients usually associated with mitochondria.
When retinae were incubated with a high concentration of labelled GABA a'lighter'population of particles seemed to accumulate the amino acid than when a low external GABA concentration was used. These results suggest that the high and low affinity uptake processes for GABA in the retina may have different cellular sites.  相似文献   

17.
EFFECTS OF AMINO-OXYACETIC ACID ON [3H]GABA UPTAKE BY RAT BRAIN SLICES   总被引:1,自引:0,他引:1  
Abstract— The effect of amino-oxyacetic acid on the uptake of [3H]GABA by rat brain slices was studied. When added simultaneously with [3H]GABA, amino-oxyacetic acid had no significant effect on [3H]GABA uptake. However, preincubation of brain slices with amino-oxyacetic acid prior to addition of [3H]GABA produced inhibition of uptake, which increased with longer duration of preincubation. The inhibitory effect of amino-oxyacetic acid was maximal at 2 mM concentration and concentrations sufficient to inhibit significantly GABA:glutamate transaminase (10--6 M) had no effect on [3H]GABA uptake. D-Cycloserine and β-hydrazino-propionic acid also inhibited [3H]GABA uptake, but the amounts required were considerably in excess of those needed to inhibit GABA:glutamate transaminase. 4-Deoxypyridoxine inhibited [3H]GABA uptake, whether given in vivo or in vitro , and the inhibitory effect of amino-oxyacetic acid was reversed with pyridoxine. GABA transport appears to be dependent on pyridoxal phosphate and interference with this function of the vitamin is suggested as the basis for the inhibitory effect of amino-oxyacetic acid on [3H]GABA uptake.  相似文献   

18.
Each of the four convulsants used significantly influenced the release of [3H]-GABA from brain slices, without affecting [3H]GABA uptake. Bicuculline (10?5M, but not 10-fold higher or lower concentrations) potentiated the electrically evoked release of [3H]GABA but not the resting release, whereas metrazol (10?4 to 10?6 M) was found to inhibit resting but not electrically evoked release. Strychnine (10?4 and 10?5 M) and picro-toxin (10?4 M) inhibited electrically evoked release.  相似文献   

19.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

20.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号