首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal protein synaptotagmin 1 functions as a Ca(2+) sensor in exocytosis via two Ca(2+)-binding C(2) domains. The very similar synaptotagmin 4, which includes all the predicted Ca(2+)-binding residues in the C(2)B domain but not in the C(2)A domain, is also thought to function as a neuronal Ca(2+) sensor. Here we show that, unexpectedly, both C(2) domains of fly synaptotagmin 4 exhibit Ca(2+)-dependent phospholipid binding, whereas neither C(2) domain of rat synaptotagmin 4 binds Ca(2+) or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca(2+) ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C(2)B domain unable to form full Ca(2+)-binding sites. These results indicate that synaptotagmin 4 is a Ca(2+) sensor in the fly but not in the rat, that the Ca(2+)-binding properties of C(2) domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.  相似文献   

2.
The C2B domain of synaptotagmin I is a Ca2+-binding module   总被引:5,自引:0,他引:5  
Ubach J  Lao Y  Fernandez I  Arac D  Südhof TC  Rizo J 《Biochemistry》2001,40(20):5854-5860
Synaptotagmin I is a synaptic vesicle protein that contains two C(2) domains and acts as a Ca(2+) sensor in neurotransmitter release. The Ca(2+)-binding properties of the synaptotagmin I C(2)A domain have been well characterized, but those of the C(2)B domain are unclear. The C(2)B domain was previously found to pull down synaptotagmin I from brain homogenates in a Ca(2+)-dependent manner, leading to an attractive model whereby Ca(2+)-dependent multimerization of synaptotagmin I via the C(2)B domain participates in fusion pore formation. However, contradictory results have been described in studies of Ca(2+)-dependent C(2)B domain dimerization, as well as in analyses of other C(2)B domain interactions. To shed light on these issues, the C(2)B domain has now been studied using biophysical techniques. The recombinant C(2)B domain expressed as a GST fusion protein and isolated by affinity chromatography contains tightly bound bacterial contaminants despite being electrophoretically pure. The contaminants bind to a polybasic sequence that has been previously implicated in several C(2)B domain interactions, including Ca(2+)-dependent dimerization. NMR experiments show that the pure recombinant C(2)B domain binds Ca(2+) directly but does not dimerize upon Ca(2+) binding. In contrast, a cytoplasmic fragment of native synaptotagmin I from brain homogenates, which includes the C(2)A and C(2)B domains, participates in a high molecular weight complex as a function of Ca(2+). These results show that the recombinant C(2)B domain of synaptotagmin I is a monomeric, autonomously folded Ca(2+)-binding module and suggest that a potential function of synaptotagmin I multimerization in fusion pore formation does not involve a direct interaction between C(2)B domains or requires a posttranslational modification.  相似文献   

3.
Ca2+-dependent phospholipid binding to the C2A and C2B domains of synaptotagmin 1 is thought to trigger fast neurotransmitter release, but only Ca2+ binding to the C2B domain is essential for release. To investigate the underlying mechanism, we have compared the role of basic residues in Ca2+/phospholipid binding and in release. Mutations in a polybasic sequence on the side of the C2B domain beta-sandwich or in a basic residue in a top Ca2+-binding loop of the C2A domain (R233) cause comparable decreases in the apparent Ca2+ affinity of synaptotagmin 1 and the Ca2+ sensitivity of release, whereas mutation of the residue homologous to Arg233 in the C2B domain (Lys366) has no effect. Phosphatidylinositol polyphosphates co-activate Ca2+-dependent and -independent phospholipid binding to synaptotagmin 1, but the effects of these mutations on release only correlate with their effects on the Ca2+-dependent component. These results reveal clear distinctions in the Ca2+-dependent phospholipid binding modes of the synaptotagmin 1 C2 domains that may underlie their functional asymmetry and suggest that phosphatidylinositol polyphosphates may serve as physiological modulators of Ca2+ affinity of synaptotagmin 1 in vivo.  相似文献   

4.
Sr(2+) triggers neurotransmitter release similar to Ca(2+), but less efficiently. We now show that in synaptotagmin 1 knockout mice, the fast component of both Ca(2+)- and Sr(2+)-induced release is selectively impaired, suggesting that both cations partly act by binding to synaptotagmin 1. Both the C(2)A and the C(2)B domain of synaptotagmin 1 bind Ca(2+) in phospholipid complexes, but only the C(2)B domain forms Sr(2+)/phospholipid complexes; therefore, Sr(2+) binding to the C(2)B domain is sufficient to trigger fast release, although with decreased efficacy. Ca(2+) induces binding of the synaptotagmin C(2) domains to SNARE proteins, whereas Sr(2+) even at high concentrations does not. Thus, triggering of the fast component of release by Sr(2+) as a Ca(2+) agonist involves the formation of synaptotagmin/phospholipid complexes, but does not require stimulated SNARE binding.  相似文献   

5.
Synaptotagmin acts as a Ca(2+) sensor in neurotransmitter release through its two C(2) domains. Ca(2+)-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca(2+) binding to the C(2)B domain is more crucial for release than Ca(2+) binding to the C(2)A domain. Here we show that Ca(2+) induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C(2)B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C(2)B domain.  相似文献   

6.
Synaptotagmin I (or II), a possible Ca(2+)-sensor of synaptic vesicles, has two functionally distinct C2 domains: the C2A domain binds Ca2+ and the C2B domain binds inositol high polyphosphates (IP4, IP5, and IP6). Ca(2+)-regulated exocytosis of secretory vesicles is proposed to be activated by Ca2+ binding to the C2A domain and inhibited by inositol polyphosphate binding to the C2B domain. Synaptotagmins now constitute a large family and are thought to be involved in both regulated and constitutive vesicular trafficking. They are classified from their distribution as neuronal (synaptotagmin I-V, X, and XI) and the ubiquitous type (synaptotagmin VI-IX). Among them, synaptotagmins III, V, VI and X are deficient in IP4 binding activity due to the amino acid substitutions in the C-terminal region of the C2B domain, suggesting that these isoforms can work for vesicular trafficking even in the presence of inositol high polyphosphates. Synaptotagmin I is also known to be present in neuronal growth cone vesicles. Antibody against the C2A domain (anti-C2A) that inhibits Ca(2+)-regulated exocytosis also blocked neurite outgrowth of the chick dorsal root ganglion (DRG) neuron, suggesting that Ca(2+)-dependent synaptotagmin activation is also crucial for neurite outgrowth.  相似文献   

7.
Sugita S  Südhof TC 《Biochemistry》2000,39(11):2940-2949
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance.  相似文献   

8.
The phospholipid-binding specificities of C(2) domains, widely distributed Ca(2+)-binding modules, differ greatly despite similar three-dimensional structures. To understand the molecular basis for this specificity, we have examined the synaptotagmin 1 C(2)A domain, which interacts in a primarily electrostatic, Ca(2+)-dependent reaction with negatively charged phospholipids, and the cytosolic phospholipase A(2) (cPLA(2)) C(2) domain, which interacts by a primarily hydrophobic Ca(2+)-dependent mechanism with neutral phospholipids. We show that grafting the short Ca(2+)-binding loops from the tip of the cPLA(2) C(2) domain onto the top of the synaptotagmin 1 C(2)A domain confers onto the synaptotagmin 1 C(2)A domain the phospholipid binding specificity of the cPLA(2) C(2) domain, indicating that the functional specificity of C(2) domains is determined by their short top loops.  相似文献   

9.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

10.
The Ca(2+)-dependent oligomerization activity of the second C2 (C2B) domain of synaptotagmin I (Syt I) has been hypothesized to regulate neurotransmitter release. We previously showed that the cytoplasmic domains of several other Syt isoforms also show Ca(2+)-dependent oligomerization activity (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the involvement of their C2 domains in Ca(2+)-dependent oligomerization. In this study, we analyzed the Ca(2+)-dependent oligomerization properties of the first (C2A) and the second C2 (C2B) domains of Syt VII. Unlike Syt I, both C2 domains of Syt VII contribute to Ca(2+)-dependent homo- and hetero-oligomerization with other isoforms. For instance, the Syt VII C2A domain Ca(2+)-dependently binds itself and the C2A domain of Syt VI but not its C2B domain, whereas the Syt VII C2B domain Ca(2+)-dependently binds itself and the C2B domain of Syt II but not its C2A domain. In addition, we showed by gel filtration that a single Syt VII C2 domain is sufficient to form a Ca(2+)-dependent multimer of very high molecular weight. Because of this "two handed" structure, the Syt VII cytoplasmic domain has been found to show the strongest Ca(2+)-dependent multimerization activity in the Syt family. We also identified Asn-328 in the C2B domain as a crucial residue for the efficient Ca(2+)-dependent switch for multimerization by site-directed mutagenesis. Our results suggest that Syt VII is a specific isoform that can cluster different Syt isoforms with two hands in response to Ca(2+).  相似文献   

11.
The C2 domain is a Ca(2+)-binding motif of approximately 130 residues in length originally identified in the Ca(2+)-dependent isoforms of protein kinase C. Single and multiple copies of C2 domains have been identified in a growing number of eukaryotic signalling proteins that interact with cellular membranes and mediate a broad array of critical intracellular processes, including membrane trafficking, the generation of lipid-second messengers, activation of GTPases, and the control of protein phosphorylation. As a group, C2 domains display the remarkable property of binding a variety of different ligands and substrates, including Ca2+, phospholipids, inositol polyphosphates, and intracellular proteins. Expanding this functional diversity is the fact that not all proteins containing C2 domains are regulated by Ca2+, suggesting that some C2 domains may play a purely structural role or may have lost the ability to bind Ca2+. The present review summarizes the information currently available regarding the structure and function of the C2 domain and provides a novel sequence alignment of 65 C2 domain primary structures. This alignment predicts that C2 domains form two distinct topological folds, illustrated by the recent crystal structures of C2 domains from synaptotagmin 1 and phosphoinositide-specific phospholipase C-delta 1, respectively. The alignment highlights residues that may be critical to the C2 domain fold or required for Ca2+ binding and regulation.  相似文献   

12.
Synaptotagmins constitute a family of membrane proteins that are characterized by one transmembrane region and two C2 domains. Recent genetic and biochemical studies have indicated that oligomerization of synaptotagmin (Syt) I is important for expression of function during exocytosis of synaptic vesicles. However, little is known about hetero-oligomerization in the synaptotagmin family. In this study, we showed that the synaptotagmin family is a type I membrane protein (N(lumen)/C(cytoplasm)) by introducing an artificial N-glycosylation site at the N-terminal domain, and systematically examined all the possible combinations of hetero-oligomerization among synaptotagmin family proteins (Syts I-XI). We classified the synaptotagmin family into four distinct groups based on differences in Ca(2+)-dependent and -independent oligomerization activity. Group A Syts (III, V, VI, and X) form strong homo- and hetero-oligomers by disulfide bonds at an N-terminal cysteine motif irrespective of the presence of Ca(2+) [Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427]. Group B Syts (I, II, VIII, and XI) show moderate homo-oligomerization irrespective of the presence of Ca(2+). Group C synaptotagmins are characterized by weak Ca(2+)-dependent (Syts IX) or no homo-oligomerization activity (Syt IV). Syt VII (Group D) has unique Ca(2+)-dependent homo-oligomerization properties with EC(50) values of about 150 microM Ca(2+) [Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185]. Syts IV, VIII, and XI did not show any apparent hetero-oligomerization activity, but some sets of synaptotagmin isoforms can hetero-oligomerize in a Ca(2+)-dependent and/or -independent manner. Our data suggest that Ca(2+)-dependent and -independent hetero-oligomerization of synaptotagmins may create a variety of Ca(2+)-sensors.  相似文献   

13.
We tested the long-standing hypothesis that synaptotagmin 1 is the Ca2+ sensor for fast neurosecretion by analyzing the intracellular Ca2+ dependence of large dense-core vesicle exocytosis in a mouse strain carrying a mutated synaptotagmin C2A domain. The mutation (R233Q) causes a twofold increase in the KD of Ca2+-dependent phospholipid binding to the double C2A-C2B domain of synaptotagmin. Using photolysis of caged calcium and capacitance measurements we found that secretion from mutant cells had lower secretory rates, longer secretory delays, and a higher intracellular Ca2+-threshold for secretion due to a twofold increase in the apparent KD of the Ca2+ sensor for fast exocytosis. Single amperometric fusion events were unchanged. We conclude that Ca2+-dependent phospholipid binding to synaptotagmin 1 mirrors the intracellular Ca2+ dependence of exocytosis.  相似文献   

14.
C2 domains are widespread protein modules that often occur as tandem repeats in many membrane-trafficking proteins such as synaptotagmin and rabphilin. The first and second C2 domains (C2A and C2B, respectively) have a high degree of homology but also specific differences. The structure of the C2A domain of synaptotagmin I has been extensively studied but little is known about the C2B domains. We have used NMR spectroscopy to determine the solution structure of the C2B domain of rabphilin. The overall structure of the C2B domain is very similar to that of other C2 domains, with a rigid beta-sandwich core and loops at the top (where Ca2+ binds) and the bottom. Surprisingly, a relatively long alpha-helix is inserted at the bottom of the domain and is conserved in all C2B domains. Our results, together with the Ca(2+)-independent interactions observed for C2B domains, indicate that these domains have a Janus-faced nature, with a Ca(2+)-binding top surface and a Ca(2+)-independent bottom surface.  相似文献   

15.
Synaptotagmin I is a synaptic vesicle associated membrane protein that appears to regulate Ca(2+)-mediated exocytosis. Here, the Ca(2+)-dependent membrane interactions of a water soluble fragment of synaptotagmin I (C2AB) that contains its two C2 domains (C2A and C2B) were determined using site-directed spin labeling. Membrane depth parameters were obtained for 19 spin-labeled mutants of C2AB when bound to phosphatidylcholine and phosphatidylserine membranes, and these distance constraints were used in combination with the high-resolution structures of C2A and C2B to generate a model for the membrane orientation and position of synaptotagmin at the bilayer interface. Both C2A and C2B bind to the membrane interface with their first and third Ca(2+) binding loops penetrating the membrane interface. The polybasic face of C2B does not interact with the membrane lipid but is available for electrostatic interaction with other components of the fusion machinery. When compared to positions determined previously for the isolated domains, both C2A and C2B have similar orientations; however, the two domains are positioned deeper into the bilayer interior when present in the tandem construct. These data indicate that C2A and C2B do not act independently but influence their mutual membrane penetration. This may explain the occurrence of multiple C2 domains in proteins that function in membrane trafficking and repair.  相似文献   

16.
Membrane resealing in mammalian cells after injury depends on Ca(2+)-dependent fusion of intracellular vesicles with the plasma membrane. When cells are wounded twice, the subsequent resealing is generally faster. Physiological and biochemical studies have shown the initiation of two different repair signaling pathways, which are termed facilitated and potentiated responses. The facilitated response is dependent on the generation and recruitment of new vesicles, whereas the potentiated response is not. Here, we report that the two responses can be differentially defined molecularly. Using recombinant fragments of synaptobrevin-2 and synaptotagmin C2 domains we were able to dissociate the molecular requirements of vesicle exocytosis for initial membrane resealing and the facilitated and potentiated responses. The initial resealing response was blocked by fragments of synaptobrevin-2 and the C2B domain of synaptotagmin VII. Both the facilitated and potentiated responses were also blocked by the C2B domain of synaptotagmin VII. Although the initial resealing response was not blocked by the C2AB domain of synaptotagmin I or the C2A domain of synaptotagmin VII, recruitment of new vesicles for the facilitated response was inhibited. We also used Ca2+ binding mutant studies to show that the effects of synaptotagmins on membrane resealing are Ca(2+)-dependent. The pattern of inhibition by synaptotagmin C2 fragments that we observed cannot be used to specify a vesicle compartment, such as lysosomes, in membrane repair.  相似文献   

17.
Synaptotagmin I is the major Ca2+ sensor for membrane fusion during neurotransmitter release. The cytoplasmic domain of synaptotagmin consists of two C2 domains, C2A and C2B. On binding Ca2+, the tips of the two C2 domains rapidly and synchronously penetrate lipid bilayers. We investigated the forces of interaction between synaptotagmin and lipid bilayers using single-molecule force spectroscopy. Glutathione-S-transferase-tagged proteins were attached to an atomic force microscope cantilever via a glutathione-derivatized polyethylene glycol linker. With wild-type C2AB, the force profile for a bilayer containing phosphatidylserine had both Ca2+-dependent and Ca2+-independent components. No force was detected when the bilayer lacked phosphatidylserine, even in the presence of Ca2+. The binding characteristics of C2A and C2B indicated that the two C2 domains cooperate in binding synaptotagmin to the bilayer, and that the relatively weak Ca2+-independent force depends only on C2A. When the lysine residues K189-192 and K326, 327 were mutated to alanine, the strong Ca2+-dependent binding interaction was either absent or greatly reduced. We conclude that synaptotagmin binds to the bilayer via C2A even in absence of Ca2+, and also that positively charged regions of both C2A and C2B are essential for the strong Ca2+-dependent binding of synaptotagmin to the bilayer.  相似文献   

18.
Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE complexes, and rapidly inhibit exocytosis. The tandem C2 domains of synaptotagmin cooperate via a novel mechanism in which the disruptive effects of Ca2+ ligand mutations in one C2 domain can be partially alleviated by the presence of an adjacent C2 domain. Complete disruption of Ca2+-triggered membrane and target membrane SNARE interactions required simultaneous neutralization of Ca2+ ligands in both C2 domains of the protein. We conclude that synaptotagmin-SNARE interactions regulate membrane fusion and that cooperation between synaptotagmin's C2 domains is crucial to its function.  相似文献   

19.
The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca(2+) ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca(2+)-sensing module. Here, we report that Ca(2+) drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca(2)+ are mediated by a set of conserved acidic Ca(2)+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca(2)+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.  相似文献   

20.
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号