首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen C  Pu F  Huang Z  Liu Z  Ren J  Qu X 《Nucleic acids research》2011,39(4):1638-1644
A novel proton-fueled molecular gate-like delivery system has been constructed for controlled cargo release using i-motif quadruplex DNA as caps onto pore outlets of mesoporous silica nanoparticles. Start from simple conformation changes, the i-motif DNA cap can open and close the pore system in smart response to pH stimulus. Importantly, the opening/closing and delivery protocol is highly reversible and a partial cargo delivery can be easily controlled at will. A pH-switchable nanoreactor has also been developed to validate the potential of our system for on-demand molecular transport. This proof of concept might open the door to a new generation of carrier materials and could also provide a general route to use other functional nucleic acids/peptide nucleic acids as capping agents in the fields of versatile controlled delivery nanodevices.  相似文献   

2.
功能核酸DNA水凝胶是一种以DNA为构建单元通过化学反应或物理缠结自组装而成的新型柔性材料,其构建单元中包含1种或多种能够形成功能核酸的特定序列。功能核酸是通过碱基修饰和DNA分子之间的相互作用力组合的一类特定核酸结构,包括核酸适配体、DNA核酶、G-四联体(G-quadruplex,G4)和i-motif结构等。传统上,高浓度的长DNA链是制备DNA水凝胶的必要条件,而核酸扩增方法的引入为DNA水凝胶的组装方式提供了新的可能。因此,对常用于制备DNA水凝胶的多种功能核酸以及核酸的提取、合成和扩增手段进行了详细的介绍。在此基础上,综述了通过化学或物理交联方式组装功能核酸DNA水凝胶的制备方法。最后,提出了DNA纳米材料的组装所面临的挑战和潜在的发展方向,以期为开发高效组装的功能核酸DNA水凝胶提供参考。  相似文献   

3.
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.  相似文献   

4.
There is currently great interest in the design of nanodevices that are capable of performing movements. Protein molecular machines are abundant in biology but it has recently been proposed that nucleic acids could also act as nanomolecular machines in model systems. Several types of movements have been described with DNA machines: rotation, extension-contraction and "scissor-like" opening and closing. Here we analyze the properties of a simple and robust device composed of a single 21-base-long oligonucleotide which relies on a duplex/quadruplex equilibrium fueled by the sequential addition of DNA single-strands, generating a DNA duplex as a by-product. The interconversion between two well-defined topological states induces a five nanometer two-stroke, linear motor type movement, which is detected by FRET spectroscopy.  相似文献   

5.
Dynamic DNA nanodevices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation remains challenging due to nuclease degradation and other cellular factors. Use of l-DNA, the nuclease resistant enantiomer of native d-DNA, provides a promising solution. On this basis, we recently developed a strand displacement methodology, referred to as ‘heterochiral’ strand displacement, that enables robust l-DNA nanodevices to be sequence-specifically interfaced with endogenous d-nucleic acids. However, the underlying reaction – strand displacement from PNA–DNA heteroduplexes – remains poorly characterized, limiting design capabilities. Herein, we characterize the kinetics of strand displacement from PNA–DNA heteroduplexes and show that reaction rates can be predictably tuned based on several common design parameters, including toehold length and mismatches. Moreover, we investigate the impact of nucleic acid stereochemistry on reaction kinetics and thermodynamics, revealing important insights into the biophysical mechanisms of heterochiral strand displacement. Importantly, we show that strand displacement from PNA–DNA heteroduplexes is compatible with RNA inputs, the most common nucleic acid target for intracellular applications. Overall, this work greatly improves the understanding of heterochiral strand displacement reactions and will be useful in the rational design and optimization of l-DNA nanodevices that operate at the interface with biology.  相似文献   

6.
We propose a new method for the separation of nucleic acids using multi-layered carbon nanotubes (CNTs) as an adsorbent. According to agarose gel electrophoresis, oxidized water-stable CNTs adsorb certain forms of nucleic acids, such as high molecular weight RNA, chromosomal DNA, linear and denatured forms of plasmid DNA. However, CNTs do not adsorb supercoiled form of plasmid DNA. Nucleic acids bound to CNTs can be readily removed by centrifugation whereas supercoiled plasmid DNA remains in solution. Upon the addition of divalent metal ions supercoiled plasmid DNA forms relatively stable complexes with CNTs due to chelation. Thus, new details about association of nucleic acids with CNTs were revealed and stoichiometry of the complexes was estimated. Our results can be used for fine purification of supercoiled plasmid DNA for gene therapy applications as well as manipulation of nucleic acids for biosensor design.  相似文献   

7.
Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces.  相似文献   

8.
Owing to the intimate linkage of sequence and structure in nucleic acids, DNA is an extremely attractive molecule for the development of molecular devices, in particular when a combination of information processing and chemomechanical tasks is desired. Many of the previously demonstrated devices are driven by hybridization between DNA ‘effector’ strands and specific recognition sequences on the device. For applications it is of great interest to link several of such molecular devices together within artificial reaction cascades. Often it will not be possible to choose DNA sequences freely, e.g. when functional nucleic acids such as aptamers are used. In such cases translation of an arbitrary ‘input’ sequence into a desired effector sequence may be required. Here we demonstrate a molecular ‘translator’ for information encoded in DNA and show how it can be used to control the release of a protein by an aptamer using an arbitrarily chosen DNA input strand. The function of the translator is based on branch migration and the action of the endonuclease FokI. The modular design of the translator facilitates the adaptation of the device to various input or output sequences.  相似文献   

9.
In recent years, a great number of analogues and mimics of nucleic acids have been developed with the aim of improving the physicochemical and biological properties of native oligonucleotides, in particular, to increase their affinity for nucleic acids, selectivity of action, and biological stability. This review summarizes the data on the synthesis and properties of DNA mimics, the analogues of peptide nucleic acids, which are the derivatives of pyrrolidine and hydroxyproline. Some physicochemical and biological properties of negatively charged mimics of this type are considered, which contain phosphonate residues in the back-bone and exhibit a high affinity for DNA and RNA, the selectivity of binding to nucleic acids, and stability in various biological systems. Examples of using these mimics as tools in molecular biology studies, in particular, functional genomics, are given. The prospects for their application in diagnosis and medicine are discussed.  相似文献   

10.
To modulate gene expression in research studies or in potential clinical therapies, transfection of exogenous nucleic acids including plasmid DNA and small interference RNA (siRNA) are generally performed. However, the cellular processing and the fate of these nucleic acids remain elusive. By investigating the cellular behavior of transfected nucleic acids using confocal imaging, here we show that when siRNA was co-transfected into cultured cells with other nucleic acids, including single-stranded RNA oligonucleotides, single and double-stranded DNA oligonucleotides, as well as long double-stranded plasmid DNA, they all aggregate in the same cytoplasmic granules. Interestingly, the amount of siRNA aggregating in granules was found not to correlate with the gene silencing activity, suggesting that assembly of cytoplasmic granules triggered by siRNA transfection may be separable from the siRNA silencing event. Our results argue against the claim that the siRNA-aggregating granules are the functional site of RNA interference (RNAi). Taken together, our studies suggest that, independent of their types or forms, extraneously transfected nucleic acids are processed through a common cytoplasmic pathway and trigger the formation of a new type of cytoplasmic granules “transfection granules”.  相似文献   

11.
Z Reich  R Ghirlando  A Minsky 《Biochemistry》1991,30(31):7828-7836
Circular dichroism and electron microscopy studies of various in vitro DNA packaging systems indicate that all the factors which induce and modulate the secondary conformation of DNA molecules are capable of eliciting nucleic acids condensation processes into tight, highly ordered tertiary structures as well as altering the extent of order and compactness within the resulting species. Specifically, such factors include the ionic strength, the presence of particular dehydrating agents and polyamines, as well as the pH values. It is proposed that slight alterations of these parameters induce the formation of short non-B-DNA segments that propagate as a perturbation along the B-DNA double helix. The structural fluctuations of the dsDNA molecules that result from the conformational discontinuities formed at the junction sites between the B motif and the conformationally altered segments alter the elastic response of the nucleic acids and facilitate cooperative condensation processes. Moreover, the type and frequency of the structurally modified clusters interspersed within the B conformation and determined by the environmental parameters are shown to provide a means for continuous regulation of the extent and mode of DNA packaging. The ionic strength and hydrophobic environment in the close vicinity of the DNA molecules are controlled and modulated in vivo by DNA-binding proteins such as histones and protamines; similarly, pH values and polyamine concentrations are constantly regulated in living systems. It is suggested, therefore, that the secondary structural polymorphism which characterizes the DNA molecules might display a regulatory role by acting as a functional link between cellular parameters and the extent, mode, and timing of nucleic acid packaging processes.  相似文献   

12.
Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique's versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing.  相似文献   

13.
Nucleic acid aptamers and enzymes as sensors   总被引:1,自引:0,他引:1  
The function of nucleic acids has been an endless source of discovery and invention that has drastically enhanced our appreciation of DNA and RNA as multifaceted polymers. It is now widely known that nucleic acids can act as enzymes (deoxyribozymes and ribozymes) and as receptors (aptamers), and that these functional nucleic acids (FNAs) can either be found in nature or isolated from pools of random nucleic acids. The availability of many natural and artificial FNAs has opened a new horizon for the development of 'smart' molecules for a variety of chemical and biological applications. This review provides a snapshot of recent progress in the application of FNAs as novel sensors for biomolecular detection, drug discovery and nanotechnology.  相似文献   

14.
本文报导了用于基因重组与基因合成实验设计的软件系统的建立.此系统由30个功能模块组成,为研究者提供了包括在DNA分子上寻找限制性内切酶位点、核酸分子片段之间同源性比较,基因化学合成的实验设计、特定顺序分析引物及核酸杂交探针的设计、阅读框的查找等功能.此外,本系统可以对外来数据库的资料进行援引和进一步分析,为分子生物学的研究提供有价值的信息.  相似文献   

15.
During the past ten years, the DNA mimic peptide nucleic acid has inspired the development of a variety of hybridisation-based methods for detection, quantification, purification and characterisation of nucleic acids. Most of these methods have taken advantage of the very favourable DNA and RNA hybridisation properties of peptide nucleic acids combined with the unique properties and opportunities offered by peptide chemistry. Within the past year, significant progress in in situ hybridisation technology has been achieved, which has resulted, in particular, in reliable and sensitive methods for detection of bacteria in clinical samples, as well as in environmental samples. Furthermore, applications of the polymerase chain reaction clamping method have been expanded, and novel ways of exploiting complexes of peptide nucleic acids with double-stranded DNA, such as double duplex invasion complexes and PD loops, have been developed.  相似文献   

16.
Tang Z  Wang K  Tan W  Li J  Liu L  Guo Q  Meng X  Ma C  Huang S 《Nucleic acids research》2003,31(23):e148
Nucleic acids ligation is a vital process in the repair, replication and recombination of nucleic acids. Traditionally, it is assayed by denatured gel electrophoresis and autoradiography, which are not sensitive, and are complex and discontinuous. Here we report a new approach for ligation monitoring using molecular beacon DNA probes. The molecular beacon, designed in such a way that its sequence is complementary with the product of the ligation process, is used to monitor the nucleic acid ligation in a homogeneous solution and in real-time. Our method is fast and simple. We are able to study nucleic acids ligation kinetics conveniently and to determine the activity of DNA ligase accurately. We have studied different factors that influence DNA ligation catalyzed by T4 DNA ligase. The major advantages of our method are its ultrasensitivity, excellent specificity, convenience and real-time monitoring in homogeneous solution. This method will be widely useful for studying nucleic acids ligation process and other nucleic acid interactions.  相似文献   

17.
Artificial ribozymes and deoxyribozymes.   总被引:9,自引:0,他引:9  
RNA and DNA molecules with catalytic properties have been isolated by in vitro selection from combinatorial nucleic acid libraries. A broad range of chemical reactions is catalyzed and nucleic acids can accelerate bond formation between small organic substrates. The catalytic performance of nucleic acids can be enhanced by the incorporation of additional functional groups.  相似文献   

18.
Shajani Z  Varani G 《Biopolymers》2007,86(5-6):348-359
RNA and DNA molecules experience motions on a wide range of time scales, ranging from rapid localized motions to much slower collective motions of entire helical domains. The many functions of RNA in biology very often require this molecule to change its conformation in response to biological signals in the form of small molecules, proteins or other nucleic acids, whereas local motions in DNA may facilitate protein recognition and allow enzymes acting on DNA to access functional groups on the bases that would otherwise be buried in Watson-Crick base pairs. Although these statements make a compelling case to study the sequence dependent dynamics in nucleic acids, there are few residue-specific studies of nucleic acid dynamics. Fortunately, NMR studies of dynamics of nucleic acids and nucleic acids-protein complexes are gaining increased attention. The aim of this review is to provide an update of the recent progress in studies of nucleic acid dynamics by NMR based on the application of solution relaxation techniques.  相似文献   

19.
对功能核酸概念的分析需要建立在对功能核酸研究的基础上,从内涵和外延两个方面来进行探析。从内涵来看,它是对具有特殊结构、执行特定生物功能的核酸分子的统称;从外延来看,它包括适体、核酸核酶、核糖开关、发光核酸、修饰核酸、功能核酸裁剪、核酸自组装、功能核酸纳米材料、核酸纳米酶、核酸药物、核酸补充剂以及DNA存储技术等。目前功能核酸已成功地应用于生物传感、生物成像、生物医学等诸多领域。对功能核酸这一概念进行了探讨,并尝试对其范畴、特点进行归纳总结,以期梳理和完善功能核酸的基本概念,促进该领域的进一步发展。  相似文献   

20.
In order to improve physicochemical and biological properties of natural oligonucleotides in particular increasing their affinity for nucleic acids, the selectivity of action and biological sustainability, several types of DNA mimics were designed. The survey collected data on the synthesis and properties of the DNA mimics - peptide-nucleic acids analogues, which are derivatives of pyrrolidine and hydroxyproline. We examine some physicochemical and biological properties of negatively charged mimics of this type, containing phosphonate residues, and possessing a high affinity for DNA and RNA, selective binding with nucleic acids and stability in various biological systems. Examples of the use of these mimics as tools for molecular biological research, particularly in functional genomics are given. The prospects for their use in diagnostics and medicine are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号