首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation - high competition) vs. coastal marine (high predation - low competition) nine-spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk-taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk-taking of all fish. Food restriction increased feeding activity and risk-taking. Pond sticklebacks became more risk-taking than marine sticklebacks under food shortage, whereas well-fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well-fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat-dependent expression of adaptive phenotypic plasticity.  相似文献   

2.
1. Theory predicts that natural selection should favour females that are able to correctly assess the risk of predation and then use that information to avoid high‐risk oviposition sites to reduce the risk of offspring predation. Despite the potential significance of such behaviour on individual fitness, population dynamics and community structure, relatively few studies of oviposition behaviour connected to the risk of predation have been carried out. 2. However, some recent studies suggest that oviposition site selection in response to risk of predation may be a common phenomenon, at least among amphibians and mosquitoes. A vast majority of previous studies have, however, neglected to investigate how the offspring are affected, in terms of fitness related parameters, by the maternal oviposition site choice. 3. In an outdoor artificial pond experiment we tested the oviposition site selection of female aquatic beetles (Hydroporus spp.) in relation to the presence or absence of a predatory fish (Perca fluviatilis). In addition, we monitored how the oviposition site selection affected the behaviour, growth and food resource of the progeny. 4. We show that free‐flying females of the aquatic beetles Hydroporus incognitus and H. nigrita prefer to oviposit in waters without fish compared with waters with fish. Larval activity of Hydroporus spp. was unaffected by fish presence. Our results indicate that beetle larvae from females that do lay eggs in waters with fish show increased growth compared with larvae in waters without fish. We explain this difference in growth by a higher per‐capita food supply in the presence of a fish predator. This finding may have important implications for our understanding of how the variance of oviposition site selection in a population is sustained.  相似文献   

3.
Tveraa T  Fauchald P  Henaug C  Yoccoz NG 《Oecologia》2003,137(3):370-376
A central issue in ecology is to what extent food limitation and predation affect animal populations. We studied how survival and reproductive success was related to the female's size in a population of semi-domesticated reindeer during 2 years where there was a large difference in snowfall during winter. The females were kept within a predator-free enclosure for about 5 weeks during the calving period and thereafter released to their natural summer pastures. Small females were more likely to fail to reproduce and they produced smaller calves than large females. Additionally, small females were more likely to loose their calves due to starvation within the predator-free enclosure and to predators outside the enclosure. Food limitation during the harsh winter appeared to be the major cause of deaths. However, food limitation interacted with predation and led to high calf losses when the females experienced low food availability during the harsh winter. In contrast, predators killed no calves after the mild winter. Apparently, the interaction between predation and food limitation is due to small females favouring their own growth and survival over calf production in summers following harsh winters with food shortage. Our results indicate that a compensatory relationship exists between mortality due food limitation and predation. Thus, the impact of calf predation on reindeer demography and population dynamics may be limited.  相似文献   

4.
Life history shifts in daphnids in response to fish infochemicalsare generally interpreted as an adaptive response to positivesize-selective predation. This interpretation does, however,not hold for larval and small juvenile planktivorous fish, whichdue to gape limitation, feed on small and medium sized prey.In a life table experiment we show that daphnids exposed toinfochemicals excreted by small gape-limited perch and largerperch changed their life history in the same direction, irrespectiveof the contrasting size-selection of the fish. However, responsesto fish infochemicals were strongly influenced by food conditionsfor daphnids. In the high food treatments size at maturity wasin the presence of fish infochemicals, whereas age at maturityremained unchanged. Under low food conditions, size at maturitywas generally smaller compared with the high food situation,but unaffected by fish infochemicals. By contrast, age at maturity,which was increased at low food levels, was significantly lowerin fish treatments compared with the control. We conclude thatlife history responses of daphnids to gape-limited fish canindeed be maladaptive, but only in situations of high food availability.This combination of factors is, however, rather unlikely becausegape-limited fish usually occur in late spring during the clearwater phase when daphnids are severely food limited. We thushypothesize that the costs of this maladaptive response undernegative size-selective predation will be low under field conditionsand the selective advantage under positive size-selective predationlater in the season will outweigh these costs.  相似文献   

5.
Trophic interactions, including “top‐down” predator‐prey interactions, are particularly important in influencing the structure of fish communities. While the varied impacts of piscivorous fish have been well investigated, the effects of fish‐eating birds on riverine fish behaviour and population dynamics still remain controversial, mainly because they are undervalued. Summer experiments were conducted in an experimental outdoor stream to evaluate the effects of avian predation threat, stream flow, and overhead cover on growth and behavioural tactics of wild juvenile chub (Leuciscus cephalus). Groups of fifteen chub maintained in riffle‐pool sequences were submitted to combinations of different conditions, namely absence or presence of a simulated fish‐eating bird, low or high flow, and absence or presence of medium or high cover. In the absence of predation threat, chub foraged in the riffles and maximized feeding opportunities. Under predation threat, they sheltered, foraged less and grew slowly and as expected, they increased their use of the riffles at high flow as water turbulence is an efficient shelter from birds but only in the absence of cover. In the presence of cover, fish sheltered exclusively under pool covers and were more prone to take risks at low flow because of higher costs in terms of lost feeding opportunities associated with these conditions. This result indicates that flow velocity altered cover use tactics through its impact on food supply, suggesting that it may affect the outcome of predator‐prey relationships. So, chub use cover in a flexible manner according to both the benefits in terms of predator avoidance and the costs in terms of lost feeding opportunities. A striking finding of the experiments is the drastic reduction in the range of growth variances amongst fish when they are maintained under predation threat, suggesting a homogenization of fitness between individuals. From all our results, we argue that in lowland streams, under summer field situations, fish‐eating birds may affect local prey population dynamics more through sub‐lethal effects on growth rates than directly through death rates.  相似文献   

6.
1. As part of a study designed to estimate the developmental costs of antipredator behaviour of larval chironomids, we used laboratory experiments to study effects of food and factors that could influence predation risk [presence of fish, cover from fish (simulated debris) and light level], on microhabitat selection by Chironomus tentans larvae in the third and fourth instar. 2. Larvae were more likely to build tubes where there was more food although their ability to move far to find food appeared limited. 3. Larvae did not avoid areas with fish and the presence of fish did not alter larval response to food. 4. Larvae avoided areas of cover (simulated debris) but cover did not alter larval response to food. 5. When provided with a choice between light and dark areas, larvae initially without tubes were found more often in the dark areas. Light level had no effect on location of larvae that had begun the experiment with tubes. 6. Results suggest the tubicolous life-style of larval Chironomus tentans limits their ability to select microhabitats that could alter their risk of predation.  相似文献   

7.
Populations with different densities often show genetically based differences in life histories. The divergent life histories could be driven by several agents of selection, one of which is variation in per‐capita food levels. Its relationship with population density is complex, as it depends on overall food availability, individual metabolic demand, and food‐independent factors potentially affecting density, such as predation intensity. Here, we present a case study of two populations of a small live‐bearing freshwater fish, one characterized by high density, low predation risk, low overall food availability, and presumably low per‐capita food levels, and the other by low density, high predation risk, high overall food availability, and presumably high per‐capita food levels. Using a laboratory experiment, we examined whether fish from these populations respond differently to food limitation, and whether size at birth, a key trait with respect to density variation in this species, is associated with any such differential responses. While at the lower food level growth was slower, body size smaller, maturation delayed, and survival reduced in both populations, these fitness costs were smaller in fish from the high‐density population. At low food, only 15% of high‐density fish died, compared to 75% of low‐density fish. This difference was much smaller at high food (0% vs. 15% mortality). The increased survival of high‐density fish may, at least partly, be due to their larger size at birth. Moreover, being larger at birth enabled fish to mature relatively early even at the lower food level. We demonstrate that sensitivities to food limitation differ between study populations, consistent with selection for a greater ability to tolerate low per‐capita food availability in the high‐density population. While we cannot preclude other agents of selection from operating in these populations simultaneously, our results suggest that variation in per‐capita food levels is one of those agents.  相似文献   

8.
Haiyan Nie  Jike Liu 《Oikos》2005,109(2):387-395
This paper reports the effects of food supply, predation and the interaction between them on the population dynamics of root voles, Microtus oeconomus , by adopting factorial experiments in field enclosures. This two-factor experiment proved the general hypothesis that food supply and predation had independent and additive effects on population dynamics of root voles. The experimental results proved the following predictions: (1) predation reduced population density and recruitment significantly; (2) food supply increased population density; (3) predation and food supply influenced spacing behavior of root voles separately and additively: Exposure to predation reduced long movements of root voles between trapping sessions; additional food supply reduced aggression level and home range size of root voles. Less movement of individuals that exposed to predators possibly reduced their opportunity of obtaining food and lessened population survival rate, which led population density to decrease. Smaller home range and lower aggression level could make higher population density tolerable. The interactive effect of predation and food on home range size was highly significant (P=0.0082<0.01). The interactive effect of food and predation on dispersal rate was significant (P<0.01). From the experimental results, we conclude that the external factors (predation, food supply) were more effective than internal factors (spacing behavior) in determining population density of root voles – under the most favorable external conditions (−P, +F treatment), the mean density and mean recruitment of root vole population was the highest; under the most unfavorable external conditions (+P, −F treatment), the mean density and mean recruitment of root vole population was the lowest.  相似文献   

9.
Mathematical modelling and laboratory experiments were used to study how exploitative competition and predation influence the species structure in cladoceran community. For five species of Cladocera (Sida crystallina, Daphnia magna, Simocephalus vetulus, Daphnia longispina, and Diaphanosoma brachyurum), representing a gradient of body size, population characteristics were described as functions of food concentration. Abundance dynamics were simulated in mixed species cultures and invasion experiments under different levels of food supply corresponding to oligo-, meso-, and eutrophic conditions. Separate simulations were also run including and excluding (fish) predation. The competitive ability of each species was estimated as the values of the population equilibrium food concentration. Simulation results showed that for the no-predator scenario, increases in the level of food supply promoted species coexistence while under lower food concentrations only one species remained at the end of the simulation runs. When predation was allowed, the number of species that coexisted at the end of the simulations increased up to four species, indicating that predator pressure facilitated species coexistence because it shortened periods of food depletion. Simulation results were verified in laboratory experiments which suggested that population equilibrium food concentration can be used as an estimate of competitive ability. Finally, species structure and relative abundance in Lake Naroch (Belarus) during the summer of 2004 was found to be consistent with our results from computer simulation and laboratory experiments with regard to competition and predation impacts on zooplankton community. Handling editor: S. I. Dodson  相似文献   

10.
Interactions between zooplankton and fish in a fertilized lake   总被引:16,自引:0,他引:16  
The effects of fish predation on the zooplankton community in an oligotrophic lake, Langvatn, near Trondheim in Central Norway, were investigated during a six-year period (1973–1978), together with the added effects of changes produced by adding artificial fertilizer in 1975 and 1976. The improved nutrient conditions in 1975 resulted in a rapid increase in biomass and production of the largest herbivore zooplankton species and of the fish population. A change in the behaviour and food habits of the arctic char was recorded; they became more pelagic and fed mainly on zooplankton. An increased survival rate of 0-group and biomass of planktivorous fish in 1975 enhanced the degree of fish predation on the zooplankton during subsequent years (1976–1978). As a consequence of fish predation, the composition of the zooplankton changed, from a mainly large-sized to a mainly small-sized community, dominated by Bosmina longirostris and rotifers. Since fish predation is size-selective and visibility-dependent, it induced a decrease in mean size and in body length at onset of maturity of the cladoceran populations and probably also weakened their ability to produce resting eggs.  相似文献   

11.
 Seagrass meadows are often important habitats for newly recruited juvenile fishes. Although substantial effort has gone into documenting patterns of association of fishes with attributes of seagrass beds, experimental investigations of why fish use seagrass habitats are rare. We performed two short-term manipulative field experiments to test (1) the effects of food supply on growth and densities of fish, and (2) effects of predation on the density and size distribution of fish recruits, and how this varies among habitat types. Experiments were conducted in Galveston Bay, Texas, and we focused on the common estuarine fish, pinfish Lagodon rhomboides. In the first experiment, replicate artifical seagrass and sand plots were either supplemented with food or left as controls. Recruitment of pinfish was significantly greater to seagrass than sand habitats; however, we detected no effect of food supplementation on the abundance of recruits in either habitat. Pinfish recruits in artifical seagrass grew at a significantly faster rate than those in sand habitats, and fish supplemented with food exhibited a greater growth rate than controls in both sand and artifical grass habitats. In our second experiment, we provided artificial seagrass and sand habitats with and without predator access. Predator access was manipulated with cages, and two-sided cages served as controls. Recruitment was significantly greater to the cage versus cage-control treatment, and this effect did not vary between habitats. In addition, the standard length of pinfish recruits was significantly larger in the predator access than in the predator exclusion treatment, suggesting size-selective predation on smaller settlers or density-dependent growth. Our results indicate that the impact of predation on pinfish recruits is equivalent in both sand and vegetated habitats, and thus differential predation does not explain the higher recruitment of pinfish to vegetated than to nonvegetated habitats. Since predators may disproportionately affect smaller fish, and a limited food resource appears to be more effectively utilized by fish in vegetated than in unvegetated habitats, we hypothesize that pinfish recruits may select vegetated habitats because high growth rates allow them to achieve a size that is relatively safe from predation more quickly. Received: 10 October 1996 / Accepted: 5 April 1997  相似文献   

12.
This study examines seasonal (winter v. summer) differences in space-time budgets, food intake and growth of Atlantic salmon Salmo salar parr in a controlled, large-scale stream environment, to examine the direction and magnitude of shifts in behaviour patterns as influenced by the availability of overhead cover and food supply. Salmo salar parr tested in the presence of overhead cover were significantly more nocturnal and occupied more peripheral positions than those tested in the absence of overhead cover. This increase in nocturnal activity was driven primarily by increased activity at night, accompanied by a reduction in daytime activity during winter. The presence of overhead cover had no effect on rates of food intake or growth for a given food supply in a given season. Growth rates were significantly higher for fish subjected to a high food supply than those subjected to a low food supply. Food supply did not affect the extent to which S. salar parr were nocturnal. These results were consistent between winter and summer. The use of riparian shading as a management technique to mitigate the effects of warming allows the adoption of more risk-averse foraging behaviour and may be particularly beneficial in circumstances where it serves also to increase the availability of food.  相似文献   

13.
Since David Lack first proposed that birds rear as many young as they can nourish, food limitation has been accepted as the primary explanation for variation in clutch size and other life-history traits in birds. The importance of food limitation in life-history variation, however, was recently questioned on theoretical grounds. Here, we show that clutch size differences between two populations of a neotropical thrush were contrary to expectations under Lack's food limitation hypothesis. Larger clutch sizes were found in a population with higher nestling starvation rate (i.e. greater food limitation). We experimentally equalized clutches between populations to verify this difference in food limitation. Our experiment confirmed greater food limitation in the population with larger mean clutch size. In addition, incubation bout length and nestling growth rate were also contrary to predictions of food limitation theory. Our results demonstrate the inability of food limitation to explain differences in several life-history traits: clutch size, incubation behaviour, parental feeding rate and nestling growth rate. These life-history traits were better explained by inter-population differences in nest predation rates. Food limitation may be less important to life history evolution in birds than suggested by traditional theory.  相似文献   

14.

Background

Grouping behaviour, common across the animal kingdom, is known to reduce an individual''s risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group.

Methodology and Principal Findings

We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity.

Conclusions and Significance

Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions.  相似文献   

15.
Using an individual-based age-structured population model (a combination of O'Brien's apparent-prey-size approach, Eggers's reactive-field-volume model, and Holling's disk equation), we could predict that (1) a Daphnia population could be kept at low density by fish predation irrespective of food level, with greater recruitment at higher food being instantly compensated for by raised mortality reflecting increased predation, and (2) Daphnia density levels are species specific and inversely related to both body size at first reproduction and the reaction distance at which a foraging fish sees its Daphnia prey. These two hypotheses were experimentally tested in outdoor mesocosms with two Daphnia species of different body sizes grown in the absence or presence of fish that were allowed to feed for 2-3 h each evening. While each Daphnia quickly reached high density with reproduction halted by food limitation in the absence of fish, the populations stayed at much lower species-specific density levels, similar in low and high food concentrations, in the presence of fish. This suggests that our model offers a reasonable mechanistic explanation for the coexistence of large- and small-bodied zooplankton in proportions reflecting their body sizes throughout habitats comprising a wide productivity spectrum, with each species at a density level at which it becomes included in a predator's diet.  相似文献   

16.
In shallow temperate lakes, zooplankton populations may exhibit diel horizontal migration (DHM) and move towards macrophytes during the day to avoid fish. Using a natural Daphnia magna population, we undertook an experimental investigation aimed to describe the genetic variation for DHM and to study whether an adaptive micro-evolutionary response occurred to changes in macrophyte coverage and fish predation pressure through time. Twenty-seven D. magna clones were hatched from ephippia in the sediment of shallow Lake Ring, Denmark. This lake was eutrophied during the 20th century and was subject to restoration measures in the 1970s. The DHM behaviour of the clones was observed both in the presence and absence of fish kairomone. Significant interclonal variation in DHM behaviour occurred in both treatments. To study the micro-evolutionary response of the Lake Ring D. magna population, two approaches were used. First, we compared the DHM behaviour of clones derived from ephippia collected at different depths. A comparison was conducted between clones resurrected from the period of eutrophication (1960–1980) and from the period of recovery (1986–2000). A significant treatment (presence and absence of fish kairomone) × period interaction effect was identified, suggesting a significant micro-evolutionary response for DHM behaviour. The D. magna clones exhibited a significantly stronger horizontal migration response during the period of eutrophication than in the recovery phase. Second, clonal means, representing the influence of the genotype on the trait, were correlated with environmental conditions (macrophyte cover, fish predation pressure and Secchi depth). The results of this analysis also suggest that a micro-evolutionary response by Daphnia has occurred in reaction to changes in fish predation pressure. In periods with high fish predation pressure, Daphnia migrated more strongly towards the plants. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

17.
Holdaway (1989) described three phases of historical extinctions and declines in New Zealand avifauna, the last of which (Group III, declining 1780?1986) was associated with European hunting, habitat clearance, and predation and competition from introduced European mammals. Some forest bird species have continued to decline since 1986, while others have increased, usually after intensive species-specific research and management programmes. In this paper, we review what is known about major causes of current declines or population limitation, including predation, competition for food or another resource, disease, forest loss, and genetic problems such as inbreeding depression and reduced genetic variation. Much experimental and circumstantial evidence suggests or demonstrates that predation by introduced mammals remains the primary cause of declines and limitation in remaining large native forest tracts. Predation alone is generally sufficient to explain the observed declines, but complex interactions between factors that vary between species and sites are likely to be the norm and are difficult to study. Currently, the rather limited evidence for food shortage is mostly circumstantial and may be obscured by interactions with predation. Climate and food supply determine the number of breeding attempts made by herbivorous species, but predation by introduced mammals ultimately determines the outcome of those attempts. After removal of pest mammals, populations are apparently limited by other factors, including habitat area, food supply, disease or avian predators. Management of these, and of inbreeding depression in bottlenecked populations, is likely to assist the effectiveness and resilience of management programmes. At the local or regional scale, however, forest area itself may be limiting in deforested parts of New Zealand. Without predator management, the number of native forest birds on the New Zealand mainland is predicted to continue to decline.  相似文献   

18.
Fishes are often subjected to seasonal and spatial patchiness of food sources. We tested how risk-taking behaviour in the six-lined trumpeter, an estuarine seagrass resident fish, changed with hunger level in a laboratory experiment. When repeatedly offered a risky source of food, well-fed fish did not approach it and all fish survived over a one-month trial. In contrast, fish deprived of all food boldly first approached the risky food source after only a few days without food in some cases, or after many days in other cases, and then continued to approach risky food each time it was presented. Larger individuals were more bold (and had longer starvation endurance) than smaller ones, and after statistically controlling for these size effects, there were consistent individual differences in the propensity to take risks (i.e. boldness). These results show that food- and individual-dependent boldness will together affect vulnerability to predators and influence predation rates when resources become scarce.  相似文献   

19.
M. Edenbrow  D. P. Croft 《Oikos》2013,122(5):667-681
Consistent individual differences in behaviour are well documented, for example, individuals can be defined as consistently bold or consistently shy. To date our understanding of the mechanisms underpinning consistent individual differences in behaviour (also termed behavioural types (BTs)) remains limited. Theoretical work suggests life‐history tradeoffs drive BT variation, however, empirical support is scarce. Moreover, whilst life‐history is known to be phenotypically plastic in response to environmental conditions during ontogeny, the extent to which such plasticity drives plasticity in behavioural traits and personality remains poorly understood. Using a natural clonal vertebrate, Kryptolebias marmoratus, we control for genetic variation and investigate developmental plasticity in life‐history and three commonly studied behavioural traits (exploration, boldness, aggression) in response to three ecologically relevant environments; conspecific presence, low food and perceived risk. Simulated predation risk was the only treatment that generated repeatable behaviour i.e. personality during ontogeny. Treatments differed in their effects on mean life‐history and behavioural scores. Specifically, low food fish exhibited reduced growth rate and exploration but did not differ from control fish in their boldness or aggression scores. Conspecific presence resulted in a strong negative effect on mean aggression, boldness and exploration during ontogeny but had minimal effect on life‐history traits. Simulated predation risk resulted in increased reproductive output but had minimal effect upon average behavioural scores. Together these results suggest that life‐history plasticity/variation may be insufficient in driving variation in personality during development. Finally, using offspring derived from each rearing environment we investigate maternal effects and find strong maternal influence upon offspring size, but not behaviour. These results highlight and support the current understanding that risk perception is important in shaping personality, and that social experience during ontogeny is a major influence upon behavioural expression.  相似文献   

20.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been 'trained' by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号