首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress and inflammation have not been well-characterized in extreme pediatric obesity. We compared levels of circulating oxidized low-density lipoprotein (oxLDL), C-reactive protein (CRP), and interleukin-6 (IL-6) in extremely obese (EO) children to normal weight (NW) and overweight/obese (OW/OB) children. OxLDL, CRP, IL-6, BMI, blood pressure, and fasting glucose, insulin, and lipids were obtained in 225 children and adolescents (age 13.5 ± 2.5 years; boys 55%). Participants were classified into three groups based on gender- and age-specific BMI percentile: NW (<85th, n = 127), OW/OB (85th- <1.2 times the 95th percentile, n = 64) and EO (≥1.2 times the 95th percentile or BMI ≥35 kg/m(2), n = 34). Measures were compared across groups using analysis of covariance, adjusted for gender, age, and race. Blood pressure, insulin, and lipids worsened across BMI groups (all P < 0.0001). OxLDL (NW: 40.8 ± 9.0 U/l, OW/OB: 45.7 ± 12.1 U/l, EO: 63.5 ± 13.8 U/l) and CRP (NW: 0.5 ± 1.0 mg/l, OW/OB: 1.4 ± 2.9 mg/l, EO: 5.6 ± 4.9 mg/l) increased significantly across BMI groups (all groups differed with P < 0.01). IL-6 was significantly higher in EO (2.0 ± 0.9 pg/ml) compared to OW/OB (1.3 ± 1.2 pg/ml, P < 0.001) and NW (1.1 ± 1.0 pg/ml, P < 0.0001) but was not different between NW and OW/OB. Extreme pediatric obesity, compared to milder forms of adiposity and NW, is associated with higher levels of oxidative stress and inflammation, suggesting that markers of early cardiovascular disease and type 2 diabetes mellitus are already present in this young population.  相似文献   

2.
Overweight and obesity result in musculoskeletal impairments that limit exercise capacity. We examined if the muscle strength and size response to resistance training (RT) differed among 687 young (mean +/- SEM, 24.2 +/- 0.2 years) overweight and obese (OW) compared to normal weight (NW) adults as denoted by the body mass index (BMI). Subjects were 449 NW (22.0 +/- 0.1 kg.m(-2), 23.4 +/- 0.3 years) and 238 OW (29.2 +/- 0.2 kg.m(-2), 25.6 +/- 0.4 years) men (n = 285) and women (n = 402) who underwent 12 weeks (2 d.wk(-1)) of RT of the nondominant arm. Maximum voluntary contraction (MVC) and 1 repetition maximum (1RM) assessed peak elbow flexor strength. Magnetic resonance imaging measured the biceps muscle cross sectional area (CSA). Multiple dependent variable analysis of covariance tested if muscle strength and size differed among BMI groups pre-, post-, and pre-to-post-RT. Overweight and obese had greater MVC, 1RM, and CSA than NW pre- and post-RT (p < 0.001). Maximum voluntary contraction and 1RM gains were not different between BMI groups pre- to post-RT (p >or= 0.05). When adjusted for baseline values, NW had greater relative MVC (21.2 +/- 1.0 vs. 17.4 +/- 1.4%) and 1RM (54.3 +/- 1.5 vs. 49.0 +/- 2.0%) increases than OW (p < 0.05). Normal weight also had greater allometric MVC (0.48 +/- 0.02 kg.kg(-0.67) vs. 0.40 +/- 0.03 kg.kg(-0.67)) and 1RM (0.25 +/- 0.00 vs. 0.22 +/- 0.01 kg.kg(-0.67)) gains than OW (p < 0.05). CSA gains were greater among OW than NW (3.6 +/- 0.2 vs. 3.2 +/- 0.1 cm(2)) (p < 0.001); however, relative CSA increases were not different between BMI groups (19.4 +/- 0.5 vs. 18.4 +/- 0.7%) (p >or= 0.05). Despite similar relative muscle size increases, relative and allometic strength gains were less among OW than NW. These findings indicate the short-term relative and allometric muscle strength response to RT may be attenuated among adults who are overweight and obese.  相似文献   

3.
This study aimed to clarify the relationships between isometric squat (IS) using a back dynamometer and 1 repetition maximum (1RM) squat for maximum force and muscle activities and to examine the effectiveness of a 1RM estimation method based on IS. The subjects were 15 young men with weight training experience (mean age 20.7 ± 0.8 years, mean height 171.3 ± 4.4 cm, mean weight 64.4 ± 8.4 kg). They performed the IS with various stance widths and squat depths. The measured data of exerted maximum force and the action potential of the agonist muscles were compared with the 1RM squat data. The exerted maximum force during IS was significantly larger in wide stance (140% shoulder width) than in narrow stance (5-cm width). The maximum force was significantly larger with decreased knee flexion. As for muscle activity, the % root mean square value of muscle electric potential of the rectus femoris and the vastus lateralis tended to be higher in wide stance. As for exerted maximum force, wide stance and parallel depth in IS showed a significant and high correlation (r = 0.73) with 1RM squat. Simple linear regression analysis revealed a significant estimated regression equation [Y = 0.992X + 30.3 (Y:1RM, X:IS)]. However, the standard error of an estimate value obtained by the regression equation was very large (11.19 kg). In conclusion, IS with wide stance and parallel depth may be useful for the estimation of 1RM squat. However, estimating a 1RM by IS using a back dynamometer may be difficult.  相似文献   

4.
Squats are a common lower extremity task used in strength and conditioning, balance training, and rehabilitation. It is important to understand how slight alterations in lower extremity kinematics during a squat affect the internal joint loading of the knee. This study directly quantified tibiofemoral contact throughout the in vitro simulation of a bodyweight back squat performed two ways: a heel squat (knees in line with toes) and a toe squat (knees anterior to the toes) at peak knee flexion. Three cadaveric right lower extremities were instrumented and positioned into the University of Texas Joint Load Simulator. Kinematics, kinetics, and predicted muscle forces from a 20-year-old athletic male performing the two back squats were used as inputs for the in vitro simulations. The quantified tibiofemoral contact area, peak pressure, net force, and center of pressure location were significantly different between squat types (p > 0.05). Net contact area on the tibial plateau at peak knee flexion was significantly larger in the heel versus toe squat (599 ± 80 mm2 vs. 469 ± 125 mm2; p < 0.05). Peak lateral pressure was significantly higher in the heel versus toe squat (2.73 ± 0.54 MPa vs. 0.87 ± 0.56 MPa; p < 0.05). Results suggest the heel squat generates an even load distribution, which is less likely to affect joint degeneration. Future in vitro simulations should quantify the effects lower extremity kinematics, kinetics, and individual muscle forces have on tibiofemoral contact parameters during common athletic tasks.  相似文献   

5.
The shoulder complex (SC) consists of joints with little congruence and its active and passive structures ensure its stability. Stability of the SC rotation centre during upper arm movements can be estimated through the analysis of Helical Axes (HAs) dispersion.The aim of this study was to describe shoulder HAs dispersion during upper limb movements performed with dominant and non-dominant arms by young and elderly subjects. Forty subjects participated in the study (20 young: age 24.8 ± 2.8 years and 20 elderly: age 71.7 ± 6.3 years). Subjects were asked to perform four cycles of 15 rotations, flexions, elevations and abductions with one arm at a time at constant speed. Reflective markers were placed on participants’ arms and trunk in order to detect movements and the HAs dispersion with an optoelectronic system. Mean Distance (MD) from the HAs barycenter and Mean Angle (MA) were used as HAs dispersion indexes. Young subjects showed significant lower MD compared to the elderly during all motion ranges of rotation, flexion and elevation (p < 0.001). Moreover, the MD was lower in the dominant arm compared to the contralateral for rotation (p = 0.049) and flexion (p = 0.019). The results may be due to joint degeneration described in elderly subjects and differences in neuromuscular control of SC stability.  相似文献   

6.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

7.
The purpose of this study was to determine the effect of a weight-bearing free weight resistance training program alone on knee flexion, hip flexion, and knee valgus during unilateral and bilateral drop jump tasks. Twenty-nine young adult females with previous athletic experience were randomly divided into a control (n = 16) and a resistance training (n = 13) groups. The resistance training group completed 8 weeks of lower extremity, weight-bearing exercises using free weights, whereas the control group did not train. A pre- and posttest was conducted to measure knee valgus, knee flexion, and hip flexion during unilateral (30 cm) and bilateral (60 cm) vertical drop jumps for maximum height. Joint angles were determined using 3-dimensional electromagnetic tracking sensors (MotionMonitor; Innovative Sports Training, Inc., Chicago, IL, USA). Initial training intensity for the bilateral squat was 50% of the subject's 1 repetition maximum (RM), which increased 5% each week to 85% during the final week. Sets and repetitions ranged from 2 to 4 and from 4 to 12, respectively. The training loads for all other exercises (lunge, step-up, unilateral squat, and Romanian deadlift) increased from 15RM to 6RM from the initial to the final week. A repeated measures analysis of variance was used to determine differences in the hip and knee joint angles. No significant differences for knee valgus and hip flexion measures were found between the groups after training; however, knee flexion angle significantly increased in the training group from the pretest (77.2 ± 4.1°) to posttest (83.2 ± 3.7°) during the bilateral drop jump. No significant changes occurred during the unilateral drop jump. Bilateral measures for knee flexion, hip flexion, and knee valgus were significantly (p < 0.05) greater than the unilateral measures during the drop jump task, which indicate an increased risk for anterior cruciate ligament (ACL) injury during unilateral drop jumps. The data support that the strength and conditioning specialist can implement resistance training alone during a short-term training period to reduce the risk of ACL injury by increasing knee flexion during a bilateral drop jump task. Increased knee flexion angles after resistance training may indicate a reduced risk for knee injury from improved neuromuscular control, resulting in a softer landing.  相似文献   

8.
Objective: To investigate the effect of breastfeeding in healthy boys and girls on their trajectories of percent body fat (%BF) and BMI standard deviation scores (BMI–SDS) throughout childhood. Methods and Procedures: Analyses of the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study included data from 219 male and 215 female term participants, born between 1984 and 1999, with repeated anthropometric measurements between 0.5 and 7 years and prospective data on duration of breastfeeding. Results: Among boys with an overweight mother (OW‐M), analyses adjusted for potential confounders revealed that not or shortly breastfed (≤17 weeks) boys did not experience the age‐dependent decrease in %BF seen in all children with normal weight mothers (NW‐Ms). In contrast, boys fully breastfed for >17 weeks were protected against the adverse effect of maternal overweight (effect of long breastfeeding vs. no/short breastfeeding among boys with OW‐Ms: 0.46%/year; s.e. 0.18; P = 0.01). There was also a suggestion of an interaction between maternal overweight and breastfeeding for the BMI–SDS trajectory (0.08 SDS/year; s.e. 0.04; P = 0.07). Among boys with NW‐Ms mothers and the corresponding subgroups of girls, breastfeeding had little effect on the development of %BF or BMI–SDS throughout childhood. Discussion: Our study suggests that breastfeeding could offset a potential programming effect for childhood adiposity among boys with OW‐Ms, to whom advice to breast‐feed should thus be specifically targeted.  相似文献   

9.
Bitter taste receptors (T2Rs) are expressed in the mammalian gastrointestinal mucosa. In the mouse colon, T2R138 is localized to enteroendocrine cells and is upregulated by long-term high fat diet that induces obesity. The aims of this study were to test whether T2R38 expression is altered in overweight/obese (OW/OB) compared to normal weight (NW) subjects and characterize the cell types expressing T2R38, the human counterpart of mouse T2R138, in human colon. Colonic mucosal biopsies were obtained during colonoscopy from 35 healthy subjects (20 OW/OB and 15 NW) and processed for quantitative RT-PCR and immunohistochemistry using antibodies to T2R38, chromogranin A (CgA), glucagon like peptide-1 (GLP-1), cholecystokinin (CCK), or peptide YY (PYY). T2R38 mRNA levels in the colonic mucosa of OW/OB were increased (> 2 fold) compared to NW subjects but did not reach statistical significance (P = 0.06). However, the number of T2R38 immunoreactive (IR) cells was significantly increased in OW/OB vs. NW subjects (P = 0.01) and was significantly correlated with BMI values (r = 0.7557; P = 0.001). In both OW/OB and NW individuals, all T2R38-IR cells contained CgA-IR supporting they are enteroendocrine. In both groups, T2R38-IR colocalized with CCK-, GLP1- or PYY-IR. The overall CgA-IR cell population was comparable in OW/OB and NW individuals. This study shows that T2R38 is expressed in distinct populations of enteroendocrine cells in the human colonic mucosa and supports T2R38 upregulation in OW/OB subjects. T2R38 might mediate host functional responses to increased energy balance and intraluminal changes occurring in obesity, which could involve peptide release from enteroendocrine cells.  相似文献   

10.
Although BMI is the most widely used measure of obesity, debate still exists on how accurately BMI defines obesity. In this study, adiposity status defined by BMI and dual‐energy X‐ray absorptiometry (DXA) was compared in a large population to evaluate the accuracy of BMI. A total of 1,691 adult volunteers from Newfoundland and Labrador participated in the study. BMI and body fat percentage (%BF) were measured for all subjects following a 12‐h fasting period. Subjects were categorized as underweight (UW), normal weight (NW), overweight (OW), or obese (OB) based on BMI and %BF criteria. Differences between the two methods were compared within gender and by age‐groups. According to BMI criteria, 1.2% of women were classified as UW, 44.2% as NW, 34.2% as OW, and 20.3% as OB. When women were classified according to %BF criteria, 2.2% were UW, 29.6% were NW, 30.9% were OW, and 37.1% were OB. The overall discrepancy between the two methods for women was substantial at 34.7% (14.6% for NW and 16.8% for OB, P < 0.001). In men, the overall discrepancy was 35.2% between BMI and DXA (17.6% for OW and 13.5% for OB, P < 0.001). Misclassification by BMI was dependent on age, gender, and adiposity status. In conclusion, BMI misclassified adiposity status in approximately one‐third of women and men compared with DXA. Caution should be taken when BMI is used in clinical and scientific research as well as clinical practice.  相似文献   

11.
The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16cm and 24cm). The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r) between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003), but more hip external rotation and knee abduction (p ≤ 0.030), than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24cm step down task (p ≤ 0.029). While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001). Angles at the knee and hip had a moderate to excellent correlation (r = 0.51–0.98), but less consistently so at the pelvis and trunk (r = 0.21–0.96). The differences in movement patterns between the single leg squat and the step down should be considered when selecting a single leg task for evaluation or treatment. The high correlation of knee and hip angles between the three tasks indicates that similar information about knee and hip kinematics was gained from each of these tasks, while pelvis and trunk angles were less well predicted.  相似文献   

12.
Objective: Increased physical activity is an integral part of weight loss programs in adolescents. We prospectively investigated the effects of exercise on glucagon‐like peptide‐1 (GLP‐1) concentrations and on appetite markers. Methods and Procedures: Normal weight (NW) and at risk of overweight/overweight (OW) male adolescents (n = 17/gr) underwent five consecutive days of aerobic exercise (1 h/day). A test meal was administered prior to the first exercise session and 36 hours following the last exercise session. GLP‐1 and markers of appetite were assessed. Results: GLP‐1 concentrations over the course of the test meal were lower in OW compared to NW boys (P < 0.05), while fasting GLP‐1 concentrations tended to be lower in OW boys (0.05 < P < 0.1). Exercise caused an increase in the acute GLP‐1 response to the liquid meal (from 52 to 78%, P = 0.02) that was similar in NW and OW adolescents. OW adolescents expressed greater restraint compared to NW adolescents (three‐factor eating questionnaire, TFEQ) and there was a significant correlation between TFEQ for restraint score and BMI s.d. both before and after exercise intervention (P < 0.015). There was no significant correlation between markers of appetite and GLP‐1 concentrations. Discussion: Lower concentrations of GLP‐1, a satiety hormone, in OW compared to NW male adolescents support the theory that GLP‐1 plays a role in the etiology of overweight. Whether the greater meal‐induced, 0–30 min GLP‐1 response following exercise is associated with increased satiety, a potentially beneficial effect of exercise, needs to be evaluated in larger studies.  相似文献   

13.
Little work has been done to examine the deep squat position (>130° sagittal knee flexion). In baseball and softball, catchers perform this squat an average of 146 times per nine-inning game. To alleviate some of the stress on their knees caused by this repetitive loading, some catchers wear foam knee supports.ObjectivesThis work quantifies the effects of knee support on lower-body joint kinematics and kinetics in the deep squat position.MethodsSubjects in this study performed the deep squat with no support, foam support, and instrumented support. In order to measure the force through the knee support, instrumented knee supports were designed and fabricated. We then developed an inverse dynamic model to incorporate the support loads. From the model, joint angles and moments were calculated for the three conditions.ResultsWith support there is a significant reduction in the sagittal moment at the knee of 43% on the dominant side and 63% on the non-dominant side compared to without support. These reductions are a result of the foam supports carrying approximately 20% of body weight on each side.ConclusionKnee support reduces the moment necessary to generate the deep squat position common to baseball catchers. Given the short moment arm of the patella femoral tendon, even small changes in moment can have a large effect in the tibial-femoral contact forces, particularly at deep squat angles. Reducing knee forces may be effective in decreasing incidence of osteochondritis dissecans.  相似文献   

14.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

15.

Objective

To analyze relationships between physical occupational exposures, post-retirement shoulder/knee pain, and obesity.

Methods

9 415 male participants (aged 63–73 in 2012) from the French GAZEL cohort answered self-administered questionnaires in 2006 and 2012. Occupational exposures retrospectively assessed in 2006 included arm elevation and squatting (never, <10 years, ≥10 years). “Severe” shoulder and knee pain were defined as ≥5 on an 8-point scale. BMI was self-reported.

Results

Mean BMI was 26.59 kg/m2 +/−3.5 in 2012. Long-term occupational exposure to arm elevation and squatting predicted severe shoulder and knee pain after retirement. Obesity (BMI≥30 kg/m2) was a risk factor for severe shoulder pain (adjusted OR 1.28; 95% CI 1.03, 1.90). Overweight (adjusted OR 1.71; 1.28,2.29) and obesity (adjusted OR 3.21; 1.90,5.41) were risk factors for severe knee pain. In stratified models, associations between long-term squatting and severe knee pain varied by BMI.

Conclusion

Obesity plays a role in relationships between occupational exposures and musculoskeletal pain. Further prospective studies should use BMI in analyses of musculoskeletal pain and occupational factors, and continue to clarify this relationship.  相似文献   

16.
An essential exercise for strength training of the lower limbs is the squat exercise. During this exercise, changes in lumbar lordosis are commonly used to indicate when the descent of the squat should cease, yet the behavior of the lumbar-scarum segments remains unclear. The purpose of this study was to quantify the lumbar-sacrum movements during the back squat, because the movement of the sacrum is influenced by the width of stance, this variable was also investigated. Thirty trained subjects, 18 men with 1 repetition maximum (1RM) squat of 123% (13.9%) of bodyweight and 12 women with 1RM squat of 93% (15.6%), performed a set of narrow and wide stance squats, each carrying an additional 50% of body weight as load. The timing and movement of the lumbar angle (T12/L1), sacrum angle (L5/S1), and lumbar flexion angle (lumbar lordosis) were measured in 3 dimensions for the ascent and decent phases. Men and women achieved similar lumbar angles for both width of stance and phase. Sacrum angles, lumbar flexion angles, and timing differed significantly (p < 0.05) between gender and width of stance. The lumbar flexion range during the descent phase for women in narrow and wide stance was 12.9° and 12.6°, respectively; for men, this range was significantly (p < 0.05) larger at 26.3° and 25.4°, respectively. Men and women developed different movement patterns for the squatting movement, and therefore, this needs to be considered in strength development and screening procedures. The lumbar spine became kyphotic as soon as a load was placed on the shoulders, and any teaching cues to maintain a curved lumbar spine when squatting must be questioned.  相似文献   

17.
Altered gait kinematics and kinetics are observed in patients with medial compartment knee osteoarthritis. Although various kinematic adaptations are proposed to be compensatory mechanisms that unload the knee, the nature of these mechanisms is presently unclear. We hypothesized that an increased toe-out angle during early stance phase of gait shifts load away from the knee medial compartment, quantified as the external adduction moment about the knee. Specifically, we hypothesized that by externally rotating the lower limb anatomy, primarily about the hip joint, toe-out gait alters the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes and transforms a portion of knee adduction moment into flexion moment. To test this hypothesis, gait data from 180 subjects diagnosed with medial compartment knee osteoarthritis were examined using two frames of reference. The first frame was attached to the tibia (reporting actual toe-out) and the second frame was attached to the laboratory (simulating no-toe-out). Four measures were compared within subjects in both frames of reference: the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes, and the adduction and flexion components of the external knee moment. The mean toe-out angle was 11.4 degrees (S.D. 7.8 degrees , range -2.2 degrees to 28.4 degrees ). Toe-out resulted in significant reductions in the frontal plane lever arm (-6.7%) and the adduction moment (-11.7%) in early stance phase when compared to the simulated no-toe-out values. These reductions were coincident with significant increases in the sagittal plane lever arm (+33.7%) and flexion moment (+25.0%). Peak adduction lever arm and moment were also reduced significantly in late stance phase (by -22.9% and -34.4%, respectively) without a corresponding increase in sagittal plane lever arm or flexion moment. These results indicate that toe-out gait in patients with medial compartment knee osteoarthritis transforms a portion of the adduction moment into flexion moment in early stance phase, suggesting that load is partially shifted away from the medial compartment to other structures.  相似文献   

18.
Objective: The objective was to examine cardiovascular autonomic (cANS) function and its potential relationships with leptin resistance, insulin resistance, oxidative stress, and inflammation in a pediatric sample with varying levels of obesity. Research Methods and Procedures: Participants were normal‐weight (NW; BMI <85th percentile, 6 male, 4 female), overweight (OW; 85th percentile < BMI <95th percentile, 6 male, 4 female), and obese children (OB; BMI >95th percentile, 6 male, 10 female) who had cANS function assessed via heart rate variability (HRV) methods during resting conditions. Standard time‐domain and frequency‐domain measures [high‐frequency normalized units (HFnu; measure of parasympathetic nervous system activity) and low frequency:high‐frequency ratio (LF:HF; overall sympathovagal balance)] of HRV were calculated. Fasting blood samples were drawn for measurement of glucose, insulin, lipids, 8‐isoprostane, leptin, soluble leptin‐receptor (sOB‐R), C‐reactive protein (CRP), interleukin‐6 (IL‐6), and tumor necrosis factor‐α (TNF‐α). Results were reported as mean ± standard error of the mean. Results: OB had significantly elevated LF:HF and decreased HFnu when compared with NW (p < 0.05), but no differences between OW and NW were observed. Measures of HRV were significantly related to leptin, insulin resistance, 8‐isoprostane, and CRP (p < 0.05), but these relationships were not significant after adjustment for fat mass. Discussion: When compared with NW, OB but not OW children are characterized by cANS dysfunction and increased leptin, insulin resistance, oxidative stress, and inflammation (CRP). The relationships between these factors seem to be dependent on quantity of fat mass and/or other factors associated with being obese.  相似文献   

19.
The purpose of the current study was to investigate the effect of 10 weeks of strength training on the flexibility of sedentary middle-aged women. Twenty women were randomly assigned to either a strength training group (n = 10; age, 37 +/- 1.7 years; body mass, 65.2 +/- 10.7 kg; height, 157.7 +/- 10.8 cm; and body mass index, 25.72 +/- 3.3 kg x m(-2)) or a control group (n = 10; age, 36.9 +/- 1.2 years; body mass, 64.54 +/- 10.18 kg; height, 158.1 +/- 8.9 cm; and body mass index, 26.07 +/- 2.8 kg x m(-2)). The strength training program was a total body session performed in a circuit fashion and consisted of 7 exercises performed for 3 circuits of 8 to 12 repetitions maximum (RM), except for the abdominal exercise which was performed for 15 to 20 RM. Flexibility measurements were taken for 10 articulation movements pre and post training: shoulder flexion and extension, shoulder horizontal adduction and abduction, elbow flexion, hip flexion and extension, knee flexion, and trunk flexion and extension. Pre and post training, 10 RM strength significantly increased (p < 0.05). Of the movements examined, only shoulder horizontal adduction, hip flexion and extension, and trunk flexion and extension demonstrated significant increases (p < 0.05). Neither elbow nor knee flexion showed a significant change with weight training. The control group showed no significant change in any of the flexibility measures determined. In conclusion, weight training can increase flexibility in previously sedentary middle-aged women in some, but not all joint movements.  相似文献   

20.
Da Silva-Grigoletto, ME, de Hoyo, M, Sa?udo, B, Corrales, L, and García-Manso, JM. Determining the optimal whole-body vibration dose-response relationship for muscle performance. J Strength Cond Res 25(12): 3326-3333, 2011-The aim of this investigation was twofold: first, to determine the optimal duration of a single whole-body vibration (WBV) exposure (phase 1) and second to find out the ideal number of sets per intervention to maximize muscle performance (phase 2). All participants were young (age: 19.4 ± 1.6 years), healthy, physically active men. In both studies, a 30-Hz frequency and a 4-mm peak-to-peak displacement were used. In phase 1, subjects (n = 30) underwent 3 sets of different durations (30, 60, and 90 seconds), whereas in phase 2, subjects (n = 27) underwent 3 interventions where the duration remained fixed at 60 seconds, and the number of sets performed (3, 6, or 9) was modified. The recovery time between sets was set at 2 minutes. In all interventions, each set consisted of 1 isometric repetition in a squat position with knees flexed at 100°. Before and after each session, jump height (countermovement jump [CMJ] and squat jump [SJ]) and power output in half squat (90° knee flexion) were assessed. In phase 1, an improvement in jump ability and power output was observed after the 30- and 60-second intervention (p < 0.01), whereas the 90 second intervention, participants just experienced a decrease in SJ and CMJ (p < 0.05). When comparing the different protocols, the greatest response was achieved using 60 seconds (p < 0.05), which was therefore considered as the optimal duration to be used in phase 2. In the second phase, improvements in jump ability and power output were found with 3 and 6 sets (p < 0.05), whereas with 9 sets, participants actually experienced a decrease in these variables. Intergroup comparison showed a greater effect for the program of 6 sets (p < 0.05). In conclusion, a WBV intervention consisting of six 60-second sets produces improved muscle performance measured by SJ, CMJ, and power output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号