首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Histone deacetylase Rpd3 is part of two distinct complexes: the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP-Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain.  相似文献   

6.
7.
Bni4 is a scaffold protein in the yeast Saccharomyces cerevisiae that tethers chitin synthase III to the bud neck by interacting with septin neck filaments and with Chs4, a regulatory subunit of chitin synthase III. We show herein that Bni4 is also a limiting determinant for the targeting of the type 1 serine/threonine phosphatase (Glc7) to the bud neck. Yeast cells containing a Bni4 variant that fails to associate with Glc7 fail to tether Chs4 to the neck, due in part to the failure of Bni4(V831A/F833A) to localize properly. Conversely, the Glc7-129 mutant protein fails to bind Bni4 properly and glc7-129 mutants exhibit reduced levels of Bni4 at the bud neck. Bni4 is phosphorylated in a cell cycle-dependent manner and Bni4(V831A/F833A) is both hyperphosphorylated and mislocalized in vivo. Yeast cells lacking the protein kinase Hsl1 exhibit increased levels of Bni4-GFP at the bud neck. GFP-Chs4 does not accumulate at the incipient bud site in either a bni4::TRP1 or a bni4(V831A/F833A) mutant but does mobilize to the neck at cytokinesis. Together, these results indicate that the formation of the Bni4-Glc7 complex is required for localization to the site of bud emergence and for subsequent targeting of chitin synthase.  相似文献   

8.
Of the six distinct isoforms of mouse protein phosphatase 2C (PP2C) (α, β-1, β-2, β-3, β-4 and β-5), PP2Cα was specifically phosphorylated on the serine residue(s) when expressed in COS7 cells. Analysis of phosphorylation sites using site-directed mutagenesis demonstrated that Ser-375 and/or Ser-377 were phosphorylated in vivo. These serine residues were the sites of phosphorylation by casein kinase II in vitro. Phosphorylation of PP2Cα was enhanced two-fold by the addition of okadaic acid to the culture medium, but addition of cyclosporin A had no such effect. These results suggest that the expressed PP2Cα is phosphorylated by a casein kinase II-like protein kinase and dephosphorylated by PP1 and/or PP2A in COS7 cells.  相似文献   

9.
Inhibitor 2 is a heat-stable protein that complexes with the catalytic subunit of type-1 protein phosphatase. The reversible phosphorylation of Thr 72 of the inhibitor in this complex has been shown to regulate phosphatase activity. Here we show that inhibitor 2 can also be phosphorylated on tyrosine residues. Inhibitor 2 was 32P-labeled by the insulin receptor kinase in vitro, in the presence of polylysine. Phosphorylation of inhibitor 2 was accompanied by decreased electrophoretic mobility. Dephosphorylation of inhibitor 2 by tyrosine phosphatase 1B, restored normal electrophoretic mobility. Phosphotyrosine in inhibitor 2 was detected by immunoblotting with antiphosphotyrosine antibodies and phosphoamino acid analysis. In addition, following tryptic digestion, one predominant phosphopeptide was recovered at the anode. The ability of inhibitor 2 to inhibit type-1 phosphatase activity was diminished with increasing phosphorylation up to a stoichiometry of 1 mole phosphate incorporated/mole of inhibitor 2, where inhibitory activity was completely lost. These data demonstrate that inhibitor 2 can be phosphorylated on tyrosine residues by the insulin receptor kinase, resulting in a molecule with decreased ability to inhibit type-1 phosphatase activity.  相似文献   

10.
Functional characterization of X. laevis U5 snRNA genes.   总被引:19,自引:6,他引:13       下载免费PDF全文
M Kazmaier  G Tebb    I W Mattaj 《The EMBO journal》1987,6(10):3071-3078
  相似文献   

11.
We have previously reported that Monad, a novel WD40 repeat protein, potentiates apoptosis induced by tumor necrosis factor‐α and cycloheximide. By affinity purification and mass spectrometry, RNA polymerase II‐associated protein 3 (RPAP3) was identified as a Monad binding protein and may function with Monad as a novel modulator of apoptosis pathways. Here we report that Reptin, a highly conserved AAA + ATPase that is part of various chromatin‐remodeling complexes, is also involved in the association of RPAP3 by immunoprecipitation and confocal microscopic analysis. Overexpression of RPAP3 induced HEK293 cells to death after UV‐irradiation. Loss of RPAP3 by RNAi improved HeLa cell survival after UV‐induced DNA damage and attenuated the phosphorylation of H2AX. Depletion of Reptin reduced cell survival and facilitated the phosphorylation on H2AX. These results suggest that RPAP3 modulates UV‐induced DNA damage by regulating H2AX phosphorylation. J. Cell. Biochem. 106: 920–928, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Sequence and expression of potato U2 snRNA genes.   总被引:5,自引:2,他引:3  
  相似文献   

13.
Changes in the cytoplasmic inorganic phosphate (P(i)) concentrations are an important cue for the plant cells to regulate their metabolism and phosphate homeostasis. However, phosphate sensors/receptors involved in this regulation are largely unknown. P(i) is a common nonspecific competitive inhibitor of phosphatases, usually in millimolar range. Here we report a procedure to refold recombinant Arabidopsis thaliana protein Ser/Thr phosphatase PP7 and demonstrate that PP7 is inhibited by submillimolar P(i) concentrations (IC(50) = 0.66 +/- 0.14 mM) via a mainly noncompetitive mechanism. The results indicate that PP7 may possess a specific P(i)-binding site responsible for its allosteric regulation, and suggest a possible phosphate sensor function for this protein phosphatase.  相似文献   

14.
15.
We have recently identified PP7, a novel group of plant protein Ser/Thr phosphatases, and hypothesized that PP7 may possess a calmodulin-binding site. To test this hypothesis, we assessed the effect of calmodulin on the activity of recombinant Arabidopsis thaliana PP7 and directly tested interaction between PP7 and calmodulin using surface plasmon resonance. Calmodulin exerted a moderate inhibitory effect on the phosphatase activity of PP7 with submicromolar affinity. PP7 specifically interacted with immobilized calmodulin (but not with recoverin, another EF hand Ca(2+)-binding protein) in a strictly Ca(2+)-dependent manner with nanomolar affinity. Deletion of an insert in the catalytic domain of PP7, predicted to function as a calmodulin-binding site, greatly decreased PP7 binding to calmodulin. These findings provide the first evidence for a plant protein phosphatase directly interacting with calmodulin and indicate that PP7 might be regulated by Ca(2+) levels in vivo.  相似文献   

16.
17.
18.
Mapes J  Ota IM 《The EMBO journal》2004,23(2):302-311
The yeast high osmolarity glycerol (HOG) pathway signals via the Pbs2 MEK and the Hog1 MAPK, whose activity requires phosphorylation of Thr and Tyr in the activation loop. The Ptc1-type 2C Ser/Thr phosphatase (PP2C) inactivates Hog1 by dephosphorylating phospho-Thr, while the Ptp2 and Ptp3 protein tyrosine phosphatases dephosphorylate phospho-Tyr. In this work, we show that the SH3 domain-containing protein Nbp2 negatively regulates Hog1 by recruiting Ptc1 to the Pbs2-Hog1 complex. Consistent with this role, NBP2 acted as a negative regulator similar to PTC1 in phenotypic assays. Biochemical analysis showed that Nbp2, like Ptc1, was required to inactivate Hog1 during adaptation. As predicted for an adapter, deletion of NBP2 disrupted Ptc1-Pbs2 complex formation. Furthermore, Nbp2 contained separate binding sites for Ptc1 and Pbs2: the novel N-terminal domain bound Ptc1, while the SH3 domain bound Pbs2. In addition, the Pbs2 scaffold bound the Nbp2 SH3 via a Pro-rich motif distinct from that which binds the SH3 domain of the positive regulator Sho1. Thus, Nbp2 recruits Ptc1 to Pbs2, a scaffold for both negative and positive regulators.  相似文献   

19.
The U5 snRNA loop 1 is characterized by the conserved sequence G1C2C3U4U5U6Y7A8Y9 and is essential for the alignment of exons during the second step of pre-mRNA splicing in Saccharo myces cerevisiae. Despite this sequence conservation the size, rather than sequence, of loop 1 is critical for exon alignment in vitro. To determine the in vivo requirements for U5 loop 1 a library of loop 1 sequences was transformed into a yeast strain where the endogenous U5 gene was deleted. Comparison of viable mutations in loop 1 revealed that position 6 was invariant and positions 5 and 7 displayed some sequence conservation. These data indicate positions 5, 6 and 7 in loop 1 are important for U5 function in vivo. A screen for mutations that suppress the temperature-sensitive phenotype of three loop 1 mutants produced eight intragenic suppressors all containing alterations in loop 1. Further analysis of these temperature-sensitive mutants revealed that each displayed distinct cell cycle arrest phenotypes and pre-mRNA splicing inhibition patterns. The cell cycle arrest is likely attributed to inefficient splicing of α-tubulin pre-mRNA in one mutant and actin pre-mRNA in another. These results suggest that various mutations in loop 1 may affect the splicing of different pre-mRNAs in vivo.  相似文献   

20.
The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号