共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolation and structures of glucagon and glucagon-like peptide from catfish pancreas 总被引:1,自引:0,他引:1
Both glucagon and the structurally similar glucagon-like peptide proteolytically derived from preproglucagon were purified from the endocrine pancreas of the channel catfish (Ictalurus punctata). This study represents the first report of the isolation of glucagon-like peptide from any source. Peptide sequences of glucagon-like peptide from other species have only been deduced from the cDNA sequences for preproglucagon. The sequence of the 34-residue glucagon-like peptide was found to be HADGTYTSDVSSYLQDQAAKDFITWLKSGQPKPE. Catfish glucagon-like peptide shares sequence identity at 26 of 31 residues with the putative glucagon-like peptide from anglerfish preproglucagon II. The mass of catfish glucagon-like peptide was found by fast atom bombardment-mass spectrometry to be 3785, identical with the value predicted by sequence analysis. This suggests that no post-translational modification occurs beyond proteolytic processing. The sequence of catfish glucagon was determined to be HSEGTFSNDYSKYLETRRAQDFVQWLM(N,S). Catfish glucagon exhibits a high degree of immunologic similarity with porcine glucagon by radioimmunoassay, whereas catfish glucagon-like peptide does not. 相似文献
2.
3.
Masumi Nozaki Katsuyuki Miyata Yoshihiko Oota Aubrey Gorbman Dr. Erika M. Plisetskaya 《Cell and tissue research》1988,253(2):371-375
Summary Pancreatic islets of salmon contain at least two peptides of the glucagon family: 29-amino acid glucagon and 31-amino acid glucagon-like peptide (GLP). Both peptides were recently isolated from the pancreatic islets of coho salmon and sequenced (Plisetskaya et al. 1986). Antibodies generated against these two peptides and against human glucagon were used as immunocytochemical probes to investigate whether glucagon and GLP are processed in the same, or in different cell types in the pancreatic islets and the gut of salmon. Two salmonid species, rainbow trout and coho salmon, were studied. All islet A-cells in the two species were immunoreactive toward both anti-salmon (s)-glucagon and anti-s-GLP. Similar colocalization of glucagon and GLP immunoreactivities was found in open-type endocrine cells in mucosae of the small intestine (including the pyloric coecae) and the large intestine close to the vent of rainbow trout. None of the antibodies stained mucosal cells of the body of the stomach. These results suggest that in the pancreas and the gut of salmonid fish the same cells produce both glucagon and GLP. These peptides are most likely the products of a single gene coding for the preproglucagon sequence. 相似文献
4.
E Plisetskaya H G Pollock J B Rouse J W Hamilton J R Kimmel A Gorbman 《Regulatory peptides》1986,14(1):57-67
Glucagon and glucagon-like peptide (GLP) containing 31 amino acids have been isolated from the principal islet of coho salmon (Oncorhynchus kisutch) by gel filtration of acid alcohol extracts followed by HPLC, and the complete amino acid sequence of both peptides has been determined. Salmon glucagon is a simple 29 residue peptide differing at 3 positions when compared to catfish glucagon and at 8 positions when compared to porcine glucagon. Salmon GLP differs at 6 positions when compared with the N-terminal 31 amino acids of the 34 amino acid catfish GLP. Both coho salmon glucagon and GLP cross-react weakly in our mammalian glucagon radioimmunoassay and therefore this technique could not be used to determine tissue content. Glucagon and GLP isolated amounted to 156 micrograms/g and 350 micrograms/g wet tissue, respectively. 相似文献
5.
Hyperglycemia in diabetes mellitus is generally associated with elevated levels of glucagon in the blood. A glucagon analog, des-His1[Glu9] glucagon amide, has been designed and synthesized and found to be an antagonist of glucagon in several systems. It has been a useful tool for investigating the mechanisms of glucagon action and for providing evidence that glucagon is a contributing factor in the pathogenesis of diabetes. The in vitro and in vivo activities of the antagonist are reported here. The analog bound 40% as well as glucagon to liver membranes, but did not stimulate the release of cyclic AMP even at 106 higher concentration. However, it did activate a second pathway, with the release of inositol phosphates. In addition, the analog enhanced the glucose-stimulated release of insulin from pancreatic islet cells. Of particular importance were the findings that the antagonist also showed only very low activity (<0.2%) in the in vivo glycogenolysis assay, and that at a ratio of 100:1 the analog almost completely blocked the hyperglycemic effects of added glucagon in normal rabbits. In addition, it reduced the hyperglycemia produced by endogenous glucagon in streptozotocin diabetic rats. Thus, we have an analog that possesses properties that are necessary for a glucagon antagonist to be potentially useful in the study and treatment of diabetes. 相似文献
6.
Xiao Q Giguere J Parisien M Jeng W St-Pierre SA Brubaker PL Wheeler MB 《Biochemistry》2001,40(9):2860-2869
Studies support a role for glucagon-like peptide 1 (GLP-1) as a potential treatment for diabetes. However, since GLP-1 is rapidly degraded in the circulation by cleavage at Ala(2), its clinical application is limited. Hence, understanding the structure-activity of GLP-1 may lead to the development of more stable and potent analogues. In this study, we investigated GLP-1 analogues including those with N-, C-, and midchain modifications and a series of secretin-class chimeric peptides. Peptides were analyzed in CHO cells expressing the hGLP-1 receptor (R7 cells), and in vivo oral glucose tolerance tests (OGTTs) were performed after injection of the peptides in normal and diabetic (db/db) mice. [D-Ala(2)]GLP-1 and [Gly(2)]GLP-1 showed normal or relatively lower receptor binding and cAMP activation but exerted markedly enhanced abilities to reduce the glycemic response to an OGTT in vivo. Improved biological effectiveness of [D-Ala(2)]GLP-1 was also observed in diabetic db/db mice. Similarly, improved biological activity of acetyl- and hexenoic-His(1)-GLP-1, glucagon((1-5)-, glucagon((1-10))-, PACAP(1-5)-, VIP(1-5)-, and secretin((1-10))-GLP-1 was observed, despite normal or lower receptor binding and activation in vitro. [Ala(8/11/12/16)] substitutions also increased biological activity in vivo over wtGLP-1, while C-terminal truncation of 4-12 amino acids abolished receptor binding and biological activity. All other modified peptides examined showed normal or decreased activity in vitro and in vivo. These results indicate that specific N- and midchain modifications to GLP-1 can increase its potency in vivo. Specifically, linkage of acyl-chains to the alpha-amino group of His(1) and replacement of Ala(2) result in significantly increased biological effects of GLP-1 in vivo, likely due to decreased degradation rather than enhanced receptor interactions. Replacement of certain residues in the midchain of GLP-1 also augment biological activity. 相似文献
7.
8.
M E Hadley F al-Obeidi V J Hruby J C Weinrach D Freedberg J W Jiang R S Stover 《Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society》1991,4(4):180-185
Four fatty acids (FA, palmitic, myristic, decanoic, hexanoic) were individually conjugated to the N-terminus of the alpha-MSH fragment analog, H-Asp5-His6-D-Phe7-Arg8-Trp9-Lys10-NH2. This resulted in enhanced potency of the conjugates (compared to the unconjugated melanotropin analog) as determined in the lizard skin bioassay and in the mouse melanoma cell tyrosinase bioassay. The shorter conjugates of hexanoic and decanoic acid were at least equipotent to alpha-MSH in the lizard skin bioassay, whereas the longer myristoyl and palmitoyl analogs were 100 times less active. The myristoyl and palmitoyl conjugates exhibited a "creeping" potency in the lizard skin bioassay-that is, potency of the peptides increased with time in contact with the skins. These observations may be related to the more lipid nature of these FA-conjugates. In the tyrosinase assay, the conjugates were 10-100 times more active than alpha-MSH or the unconjugated analog. Each of the FA-melanotropic peptide conjugates exhibited prolonged (residual) melanotropic activity in both the lizard skin and melanoma cell bioassays. In other words, after removal of the melanotropin conjugates from contact with the skins or cells, responses were still manifested for hours or days thereafter. As little as 1 hr of contact with melanoma cells resulted in enhanced enzyme activity as measured 48 hr later. Since the conjugates, but not H-[Asp5, D-Phe7, Lys10]alpha-MSH5-10-NH2, exhibited prolonged activity, the conversion of reversible agonists to irreversible agonists was demonstrated. 相似文献
9.
The pharmacokinetics of glucagon-like peptide-1 (GLP-1) in vivo after bolus and continuous i.v. administrations of the peptide were compared with those of glucagon in rats. The half-disappearance time (t1/2) distribution volume (Vd) and metabolic clearance rate (MCR) of GLP-1 given as a bolus injection and by constant infusion, were, respectively, as follows: t1/2 (min), 47.7 +/- 14.5 and 39.5 +/- 15.5 (mean +/- S.D.); Vd (ml), 903.8 +/- 62.4 and 516.3 +/- 92.1 and MCR (ml kg-1 min-1), 27.4 +/- 10.8 and 18.6 +/- 8.6. These values differed significantly from the respective values for glucagon (t1/2, 3.3 +/- 0.6 and 5.8 +/- 1.0; Vd, 206.5 +/- 25.9 and 240.0 +/- 76.1; and MCR, 83.1 +/- 8.2 and 46.7 +/- 13.3). These findings demonstrate that GLP-1 is degraded more slowly than glucagon in vivo. 相似文献
10.
Lund PK 《Regulatory peptides》2005,128(2):93-96
The discovery of glucagon-like peptide 1 (GLP-1) began more than two decades ago with the observations that anglerfish islet proglucagon messenger RNAs (mRNAs) contained coding sequences for two glucagon-related peptides arranged in tandem. Subsequent analyses revealed that mammalian proglucagon mRNAs encoded a precursor containing the sequence of pancreatic glucagon, intestinal glicentin and two glucagon-related peptides termed GLP-1 and GLP-2. Multidisciplinary approaches were then required to define the structure of biologically active GLP-1 7-36 amide and its role as an incretin, satiety hormone and, most recently, a neuroprotective peptide. This historial perspective outlines the use of traditional recombinant DNA approaches to derive the GLP-1 sequence and highlights the challenges and combination of clinical and basic science approaches required to define the physiology and pathophysiology of bioactive peptides discovered through genomics. 相似文献
11.
Immunohistochemical localization of glucagon-like peptide 1 总被引:1,自引:0,他引:1
Summary We report the use of poly-and monoclonal antibodies to study the immunohistochemical distribution of glucagon-like peptide-1 immunoreactivity (GLP-1-IR) in various tissues. The polyclonal antibodies against GLP-1 reacted with pancreatic A cells, enteroglucagon (L) cells in the gut, and some neurons in the central nervous system of all species tested. In pancreas and gut the monoclonal antibodies against GLP-1 exhibited a similar, but species specific distribution, relative to the polyclonal antibodies. The colocalization of GLP-1 and glucagon immunoreactivity in pancreatic, intestinal, and nervous tissues is in agreement with previously reported findings that both peptides are part of a single precursor molecule (preproglucagon).Supported by the DFG, SFB 90 相似文献
12.
Pan CQ Buxton JM Yung SL Tom I Yang L Chen H MacDougall M Bell A Claus TH Clairmont KB Whelan JP 《The Journal of biological chemistry》2006,281(18):12506-12515
The closely related peptides glucagon-like peptide (GLP-1) and glucagon have opposing effects on blood glucose. GLP-1 induces glucose-dependent insulin secretion in the pancreas, whereas glucagon stimulates gluconeogenesis and glycogenolysis in the liver. The identification of a hybrid peptide acting as both a GLP-1 agonist and a glucagon antagonist would provide a novel approach for the treatment of type 2 diabetes. Toward this end a series of hybrid peptides made up of glucagon and either GLP-1 or exendin-4, a GLP-1 agonist, was engineered. Several peptides that bind to both the GLP-1 and glucagon receptors were identified. The presence of glucagon sequence at the N terminus removed the dipeptidylpeptidase IV cleavage site and increased plasma stability compared with GLP-1. Targeted mutations were incorporated into the optimal dual-receptor binding peptide to identify a peptide with the highly novel property of functioning as both a GLP-1 receptor agonist and a glucagon receptor antagonist. To overcome the short half-life of this mutant peptide in vivo, while retaining dual GLP-1 agonist and glucagon antagonist activities, site-specific attachment of long chained polyethylene glycol (PEGylation) was pursued. PEGylation at the C terminus retained the in vitro activities of the peptide while dramatically prolonging the duration of action in vivo. Thus, we have generated a novel dual-acting peptide with potential for development as a therapeutic for type 2 diabetes. 相似文献
13.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis. 相似文献
14.
Biological activities of retro and diastereo analogs of a 13-residue peptide with antimicrobial and hemolytic activities. 总被引:1,自引:0,他引:1
The biological activities of synthetic retro and diastereo analogs of PKLLKTFLSKWIG (SPFK), a 13-residue peptide with antimicrobial and hemolytic activities, have been investigated. Retro peptides with C-terminal acid and amide exhibited antibacterial activities comparable with those of SPFK. Their hemolytic activities were, however, only marginally lower. The diastereo analog with C-terminal acid was not antibacterial and was weakly hemolytic. Amidation of this analog could restore antibacterial activity. Both retro analogs were unordered in aqueous medium but had a propensity for a helical structure in trifluoroethanol. However, diastereo analogs were unordered in both aqueous medium and trifluoroethanol. Thus, reversing the sequence in a short amphiphilic peptide may not always result in the selective loss of biological activity such as hemolytic activity. Also, introduction of enantiomeric amino acids in a short peptide to generate a diastereomer may result in loss of structure as well as antimicrobial and hemolytic activities, unless compensated by an increase in positive charges. 相似文献
15.
K Yamazaki H Terauchi D Iida H Fukumoto S Suzuki T Kagaya M Aoki K Koyama T Seiki K Takase M Watanabe T Arai K Tsukahara J Nagakawa 《Bioorganic & medicinal chemistry letters》2012,22(19):6126-6135
Glucagon-like peptide 2 (GLP-2) is an intestinotropic peptide that binds to GLP-2 receptor (GLP-2R), a class-B G protein-coupled receptor (GPCR). Few synthetic agonists have been reported so far for class-B GPCRs. Here, we report the first scaffold compounds of ago-allosteric modulators for human GLP-2R, derived from methyl 2-{[(2Z)-2-(2,5-dichlorothiophen-3-yl)-2-(hydroxyimino)ethyl]sulfanyl}benzoate (compound 1). 相似文献
16.
胰高血糖素样肽-2(glucagon-like peptide-2,GLP-2)是胰高血糖素原基因转录、翻译后处理加工的33氨基酸的多肽,GLP-2经二酰肽酶Ⅳ水解后,则失去生物学活性。GLP-2作为一种肠上皮特异性生长因子,能促进正常肠黏膜的生长及损伤肠上皮的修复。GLP-2通过作用于GLP-2受体(GLP-2R)来发挥生物学作用。GLP-2R在肠道的广泛分布(肠上皮细胞、肠内在神经元、肠内分泌细胞、肠黏膜下的肌纤维母细胞),提示GLP-2可能通过直接、间接等多条途径发挥生物学作用。本文概括介绍GLP-2的特性、生理作用及机制等方面的研究进展。 相似文献
17.
18.
Using glucagon-like peptide-1 N-terminus and C-terminus directed antisera, we investigated concentration and molecular forms of GLP-1 immunoreactivity (IR) in extracts of various tissues of the dog. GLP-1 IR measured with C-terminus-directed antiserum R2337 (GLP-1 IR-CT) was high in the ileum, appendix, jejunum, colon, and gastric fundus and body. GLP-1 IR measured with N-terminus-directed antiserum R1043 (GLP-1 IR-NT) was high only in the pancreas, and gastric fundus and body. Only GLP-1 IR-CT was found in the hypothalamus, thalamus and medulla oblongata. No immunoreactive materials were detected in the liver, spleen and kidney. Gel-filtration with Sephadex G-50 showed two peaks of both GLP-1 IR-CT and GLP-1 IR-NT, at 10kd and at the position of GLP-1 (1-36 amide) in the pancreatic extract, and one peak at 10kd in the stomach extract. Ileal extracts showed 3 peaks of GLP-1 IR-CT at 10kd, at the position of GLP-1(1-36 amide) and GLP-1(7-36 amide), respectively, but GLP-1 IR-NT was coeluted with GLP-1(1-36 amide). Hypothalamic extracts showed a single peak at the position of GLP-1(7-36 amide). These results suggest that processing of preproglucagon differs in different organs, and that the main GLP-1-related products are a large molecular form and GLP-1(1-36 amide) or GLP-1(1-37) in the pancreas, and GLP-1(7-36 amide) or GLP-1 (7-37) in the ileum and hypothalamus. 相似文献
19.
Yasuda N Inoue T Nagakura T Yamazaki K Kira K Saeki T Tanaka I 《Biochemical and biophysical research communications》2002,298(5):779-784
Metformin was reported to increase plasma active glucagon-like peptide-1 (GLP-1) in humans. There are two possible mechanisms for this effect: (1) metformin inhibits dipeptidyl peptidase IV (DPPIV), an enzyme degrading GLP-1, and (2) metformin enhances GLP-1 secretion. To elucidate the mechanism(s), we examined (1) IC(50) of metformin for DPPIV inhibition, (2) plasma active GLP-1 changes after oral biguanide (metformin, phenformin, and buformin) treatment in fasting DPPIV-deficient F344/DuCrj rats, and (3) plasma intact GLP-1 excursions after oral administration of metformin and/or valine-pyrrolidide, a DPPIV inhibitor, in fasting DPPIV-positive F344/Jcl rats. Our in vitro assay showed that metformin at up to 30mM has no inhibitory activity towards porcine or rat DPPIV. Metformin treatment (30, 100, and 300mg/kg) increased plasma active GLP-1 levels dose-dependently in DPPIV-deficient F344/DuCrj rats (approximately 1.6-fold at 3 and 5h after administration of 300mg/kg). This treatment had no effect on blood glucose levels. Similarly, phenformin and buformin (30 and 100mg/kg) elevated plasma intact GLP-1 levels in F344/DuCrj rats. In DPPIV-positive F344/Jcl rats, coadministration of metformin (300mg/kg) and valine-pyrrolidide (30mg/kg) resulted in elevation of plasma active GLP-1, but neither metformin nor valine-pyrrolidide treatment alone had any effect. These findings suggest that metformin has no direct inhibitory effect on DPPIV activity and that metformin and the other biguanides enhance GLP-1 secretion, without altering glucose metabolism. Combination therapy with metformin and a DPPIV inhibitor should be useful for the treatment of diabetes. 相似文献
20.
Ivory CP Wallace LE McCafferty DM Sigalet DL 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(6):G1202-G1210
Glucagon-like peptide 2 (GLP-2) is an important intestinal growth factor with anti-inflammatory activity. We hypothesized that GLP-2 decreases mucosal inflammation and the associated increased epithelial proliferation by downregulation of Th1 cytokines attributable to reprogramming of lamina propria immune regulatory cells via an interleukin-10 (IL-10)-independent pathway. The effects of GLP-2 treatment were studied using the IL-10-deficient (IL-10(-/-)) mouse model of colitis. Wild-type and IL-10(-/-) mice received saline or GLP-2 (50 microg/kg sc) treatment for 5 days. GLP-2 treatment resulted in significant amelioration of animal weight loss and reduced intestinal inflammation as assessed by histopathology and myeloperoxidase levels compared with saline-treated animals. In colitis animals, GLP-2 treatment also reduced crypt cell proliferation and crypt cell apoptosis. Proinflammatory (IL-1beta, TNF-alpha, IFN-gamma,) cytokine protein levels were significantly reduced after GLP-2 treatment, whereas IL-4 was significantly increased and IL-6 production was unchanged. Fluorescence-activated cell sorting analysis of lamina propria cells demonstrated a decrease in the CD4(+) T cell population following GLP-2 treatment in colitic mice and an increase in CD11b(+)/F4/80(+) macrophages but no change in CD25(+)FoxP3 T cells or CD11c(+) dendritic cells. In colitis animals, intracellular cytokine analysis demonstrated that GLP-2 decreased lamina propria macrophage TNF-alpha production but increased IGF-1 production, whereas transforming growth factor-beta was unchanged. GLP-2-mediated reduction of crypt cell proliferation was associated with an increase in intestinal epithelial cell suppressor of cytokine signaling (SOCS)-3 expression and reduced STAT-3 signaling. This study shows that the anti-inflammatory effects of GLP-2 are IL-10 independent and that GLP-2 alters the mucosal response of inflamed intestinal epithelial cells and macrophages. In addition, the suggested mechanism of the reduction in inflammation-induced proliferation is attributable to GLP-2 activation of the SOCS-3 pathway, which antagonizes the IL-6-mediated increase in STAT-3 signaling. 相似文献