首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine whether GTP-binding protein(s) is (are) involved in adipocyte differentiation, the effect of pertussis toxin (PT) was studied in rat adipocyte precursor cell culture. PT potentiated adipose conversion induced by dexamethasone, insulin, and 1-methyl-3-isobutylxanthine in a dose- and time-dependent fashion. Attenuation of an inhibitory control of adenylate cyclase was not the mechanism of action of PT. The dose-dependent inhibition of PT-catalyzed ADP-ribosylation of the Mr 40,000 protein of the cell membrane by preincubation of the toxin was inversely related to the potentiating effect on differentiation. PT-sensitive G protein(s) may be involved in adipocyte differentiation in a negative fashion.  相似文献   

2.
The B subunit of cholera toxin, a protein which binds specifically to ganglioside GM1 on the cell surface, stimulates DNA synthesis in quiescent Swiss 3T3 fibroblasts as measured by an increase in [3H]thymidine incorporation. Pertussis toxin pretreatment markedly inhibits B subunit-induced DNA synthesis. The inhibitory effects of pertussis toxin were observed even in the presence of insulin which greatly potentiates the mitogenic response to the B subunit. Treatment with either pertussis toxin or insulin did not alter the binding of the B subunit to the cells. The dose-response for pertussis toxin-induced inhibition of DNA synthesis correlated closely with the dose-response for ADP-ribosylation of a 41-kDa membrane protein, suggesting the involvement of a GTP-binding protein that is a substrate for pertussis toxin (Gi) in mitogenesis induced via cross-linking of endogenous gangliosides. Pertussis toxin, in a similar concentration-dependent manner, also inhibited the mitogenic response to unfractionated fetal calf serum and to bombesin in the absence or presence of insulin. The inhibitory effect of pertussis toxin was clearly unrelated to any effects on known G proteins coupled to adenylate cyclase or phospholipase C. In addition, pertussis toxin did not impair the early increase in cytosolic free Ca2+ induced by the B subunit or bombesin. Pertussis toxin-induced inhibition of DNA synthesis could still be observed even when the toxin was added as late as 6 h after addition of the growth-promoting agents. This suggests the involvement of a GTP-binding protein in a late step of the B subunit- and bombesin-mediated pathways of mitogenesis. The possibility that other growth factors bypass this pathway is shown by their lack of sensitivity to pertussis toxin.  相似文献   

3.
Incubation of 3T3-L1 adipocytes with insulin or isoproterenol for 10 min increased particulate "low Km" cAMP phosphodiesterase activity by 42% and 50%, respectively. Pertussis toxin catalyzed the [32P]-ADP ribosylation of a 41,000 dalton protein in adipocyte particulate fractions; prior incubation of adipocytes with toxin markedly reduced incorporation of radiolabel. Exposure of adipocytes to pertussis toxin (0.3 microgram, 18 hr) increased glycerol production and inhibited activation of cAMP phosphodiesterase by insulin, but not by isoproterenol. These results suggest that pertussis toxin can interfere with receptor-mediated processes that stimulate cAMP hydrolysis as well as those that inhibit cAMP formation.  相似文献   

4.
Cytosolic free calcium, [Ca(2+)](i), measured in individual prothoracic gland cells of Manduca sexta with Fura-2 was increased by prothoracicotropic hormone, PTTH, and by mastoparan, a wasp venom peptide, activating G proteins. The effect on [Ca(2+)](i) of mastoparan and of PTTH was inhibited by cadmium and the antagonist of T-type calcium channels, amiloride, and not influenced by the L-type calcium channel blocker nitrendipine, suggesting that the same or similar plasma membrane channels are involved in the action of mastoparan and of PTTH. Pertussis toxin prevented the mastoparan-induced increase of [Ca(2+)](i), whereas the effect of PTTH is not influenced by pertussis toxin. Intracellular addition of GDP-beta-S failed to inhibit the PTTH-stimulated increase in [Ca(2+)](i) suggesting that G proteins are not involved in the stimulatory mechanism of PTTH.  相似文献   

5.
Pertussis toxin is an ADP-ribosyltransferase which alters the function of some of the GTP-binding proteins and inhibits some actions of insulin. In vivo, pertussis toxin (2 micrograms/ml/2h) inhibited insulin-stimulated tyrosyl autophosphorylation of the insulin receptor by 50% in FaO cells, and nearly completely inhibited phosphorylation of the cellular insulin receptor substrate pp185. Similarly, insulin-stimulated autophosphorylation and kinase activity of the insulin receptor purified on wheat germ agglutinin-agarose from pertussis toxin-treated FaO cells was diminished 50%; however, treatment of cells with the catalytically inactive B-oligomer of the toxin had no effect on receptor tyrosine kinase activity in vitro. Pertussis toxin did not alter insulin binding or the cellular levels of ATP, cAMP, and cGMP. Furthermore, immunoprecipitation of the insulin receptor from intact cells with anti-insulin receptor antibodies showed that pertussis toxin did not increase the phosphorylation of serine or threonine residues in the insulin receptor. These results suggest that pertussis toxin can modulate signal transduction of insulin at the level of the insulin receptor kinase.  相似文献   

6.
Effects of pertussis toxin treatment on the metabolism of rat adipocytes   总被引:10,自引:0,他引:10  
The protein toxin present in Bordetella pertussis vaccine blocks the inhibition of adenylate cyclase by prostaglandins and adenosine which may be secondary to ADP-ribosylation of an inhibitory guanine nucleotide-binding protein. The stimulatory effects of alpha 1-catecholamine agonists on 32P uptake into phosphatidic acid and phosphatidylinositol in isolated rat adipocytes were virtually abolished by pertussis toxin treatment. In contrast, the stimulatory effects of insulin were increased in adipocytes after pertussis toxin treatment. Pertussis toxin treatment did not alter insulin stimulation of glucose oxidation and actually increased glucose conversion to lipid. Basal lipolysis was elevated in adipocytes by pertussis toxin treatment but not basal cyclic AMP. However, the increases in cyclic AMP and lipolysis due to low concentrations of catecholamines and forskolin were markedly potentiated by pertussis toxin treatment. The inhibitory effects of adenosine on cyclic AMP stimulation due to catecholamines were abolished by pertussis toxin. These data indicate that pertussis toxin selectively interferes with inhibition of cyclic AMP accumulation in rat adipocytes by adenosine, potentiates the increases in cyclic AMP due to catecholamines, increases the stimulatory effects of insulin on adipocyte metabolism, and interferes with alpha 1-catecholamine stimulation of phosphatidylinositol turnover.  相似文献   

7.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin E2 (PGE2) stimulated the formation of inositol phosphates in a dose-dependent manner in the range between 10 nM and 10 microM. Pertussis toxin inhibited the effect of PGE2 dose-dependently in the range between 1 ng/ml and 1 micrograms/ml. In the cell membranes, pertussis toxin catalyzed ADP-ribosylation of a protein with an Mr of about 40,000. Pretreatment of membranes with 10 microM PGE2 in the presence of 2.5 mM MgCl2 and 100 microM GTP markedly attenuated this pertussis toxin-catalyzed ADP-ribosylation of the protein in a time-dependent manner. G12 was detected in these cells by immunoblotting with purified anti-G12 alpha antibodies. The results indicate the possible coupling of PGE2 signalling with pertussis toxin-sensitive GTP-binding protein, which is probably G12, in osteoblast-like cells.  相似文献   

8.
Pertussis toxin may inactivate N proteins linked to phospholipase C. We examined the effect of pretreatment with pertussis toxin at different concentrations and times on agonist-induced PGE2 synthesis in mesangial cells. Two to four hours with 10-50 ng/ml of pertussis toxin inhibited the response to angiotensin and platelet activating factor, but with a different sensitivity. This was associated with decreased [14C]arachidonic acid release in prelabeled cells. The response to A23187 was unaltered. At high concentrations (1 to 5 micrograms/ml) pertussis toxin increased basal PGE2 and the response to all agonists. Pertussis toxin pretreatment resulted in a dose-dependent ribosylation of a 40 kDa protein band. Thus, responses to different agonists have different sensitivity to pertussis toxin inhibition, which at high concentrations may even have opposite effects.  相似文献   

9.
Terminal differentiation of skeletal muscle cells in culture is inhibited by a number of different growth factors whose subsequent intracellular signaling events are poorly understood. In this study, we have investigated the role of heterotrimeric G proteins in mediating fibroblast growth factor (FGF)-dependent signals that regulate myogenic differentiation. Pertussis toxin, which ADP-ribosylates and inactivates susceptible G proteins, promotes terminal differentiation in the presence of FGF-2, suggesting that Gα or Gβγ subunits or both are involved in transducing the FGF-dependent signal(s) that inhibits myogenesis. We found that Gβγ subunits are likely to be involved since the expression of the C terminus of β-adrenergic receptor kinase 1, a Gβγ subunit-sequestering agent, promotes differentiation in the presence of FGF-2, and expression of the free Gβγ dimer can replace FGF-2, rescuing cells from pertussis toxin-induced differentiation. Addition of pertussis toxin also blocked FGF-2-mediated activation of mitogen-activated protein kinases (MAPKs). Ectopic expression of dominant active mutants in the Ras/MAPK pathway rescued cells from pertussis toxin-induced terminal differentiation, suggesting that the Gβγ subunits act upstream of the Ras/MAPK pathway. It is unlikely that the pertussis toxin-sensitive pathway is activated by other, as yet unidentified FGF receptors since PDGF (platelet-derived growth factor)-stimulated MM14 cells expressing a chimeric receptor containing the FGF receptor-1 intracellular domain and the PDGF receptor extracellular domain were sensitive to pertussis toxin. Our data suggest that FGF-mediated signals involved in repression of myogenic differentiation are transduced by a pertussis toxin-sensitive G-protein-coupled mechanism. This signaling pathway requires the action of Gβγ subunits and activation of MAPKs to repress skeletal muscle differentiation.  相似文献   

10.
In the present study we used 235-1 cells, a prolactin secreting clone derived from a pituitary tumor. In these cells maitotoxin, a calcium channels activator, likely acting on voltage sensitive calcium channels, increases intracellular free calcium measured by Quin 2 technique. Maitotoxin stimulation of calcium flux was inhibited both by nicardipine and verapamil in a dose dependent manner. Pertussis toxin pretreatment does not modify maitotoxin activation of calcium channels, while completely abolishes nicardipine inhibition of maitotoxin induced voltage sensitive calcium channels activation, without affecting verapamil effect. These results suggest a possible involvement of a pertussis toxin sensitive G protein in dihydropyridine inhibition of voltage sensitive calcium channels.  相似文献   

11.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

12.
N Yu  M Kavaliers 《Peptides》1991,12(4):877-881
There is accumulating evidence that pertussis toxin-sensitive G proteins are associated with the transduction of opioid-mediated antinociception in mammals. The present study examined the effects of hemocel injections of pertussis toxin (0.10 microgram) on the day-night rhythm of nociception and mu and kappa opioid-mediated antinociception in a mollusc, the land snail, Cepaea nemoralis. Five days after treatment, pertussis toxin significantly reduced the naloxone-sensitive, opioid-mediated nocturnal peak in the day-night rhythm of nociception [as measured by the latency of response to a thermal (40 degrees C) stimulus] in Cepaea, without affecting the daytime response latency. Pertussis toxin also significantly decreased the antinociceptive effects of the mu agonist, DAMGO, and blocked those of the kappa opioid agonist, U-69,593. These results suggest that G protein substrates of pertussis toxin are associated with the transduction of opioid-mediated nociception and antinociception in the snail, Cepaea.  相似文献   

13.
1. Some of the actions of pertussis toxin on the rabbit luteal adenylyl cyclase system were analyzed. 2. Incubation of luteal membranes with pertussis toxin and [32P]NAD resulted in the [32P]ADP-ribosylation of a 40,000 Da protein that is distinct from the proteins ADP-ribosylated by cholera toxin. 3. Pertussis toxin specific [32P]ADP-ribosylation was time-dependent and dependent upon the concentration of pertussis toxin present during the incubation. 4. Pertussis toxin mediated [32P]ADP-ribosylation was enhanced by ATP, ADP, adenylyl imidodiphosphate, GTP, guanosine-5'-O-(2-thiodiphosphate), guanosine-5'-O-(3-thiotriphosphate), and NaF but not AMP or guanylyl imidodiphosphate [GMP-P(NH)P]. 5. Treatment of luteal membranes with NAD and pertussis toxin prevents GTP and enkephalin but not GMP-P(NH)P mediated inhibition of forskolin stimulated adenylyl cyclase, demonstrating the existence of a functional Gi in the rabbit corpus luteum.  相似文献   

14.
Rats were tested for dipsogenic and pressor responses to intracerebroventricularly (icv) administered Ang II and for dipsogenic responses to icv administered carbachol in the absence and presence of pertussis toxin, also administered icv. Pertussis toxin did not inhibit the pressor or dipsogenic responses to Ang II, but did inhibit the dipsogenic responses to carbachol. This suggests that the pressor and dipsogenic responses to Ang II in the brain are not mediated by a pertussis toxin-sensitive G protein, but that the muscarinic cholinergic dipsogenic response is mediated by a pertussis toxin-sensitive G protein.  相似文献   

15.
Pertussis toxin-dependent ADP-ribosylation of rat heart and human mononuclear leukocyte membranes was found to be markedly enhanced in the presence of detergents. The order of potency for this effect of detergents was Triton X-100 approximately Lubrol PX greater than digitonin much greater than cholate greater than 3-[(3-cholamidopropyl)dimethylammonia]propanesulfonic acid. Exposure of membranes to increasing concentrations of detergents increased the proportion of pertussis toxin substrate demonstrable in the supernatant fraction whereas the substrate remaining in the pellet fraction demonstrated a complicated relationship with the concentration of detergent. In complementary experiments, it was found that immunochemical detection of G proteins in the pellet fraction from suspensions previously incubated with a maximal concentration of detergent revealed a reduced presence of G proteins with a concomitant increase in the concentration of G proteins in the supernatant fraction; this situation was not observed at submaximal concentrations of detergent during the preincubation of myocardial membranes. The results suggest that the detergent-mediated enhancement of pertussis toxin's action to ADP-ribosylate susceptible G proteins is a complicated process that includes concentration-dependent creation of conditions favorable to the actions of the toxin as well as solubilization of the substrates for the toxin.  相似文献   

16.
G-protein mRNA levels during adipocyte differentiation   总被引:1,自引:0,他引:1  
G-protein-mediated transmembrane signaling in 3T3-L1 cells is modulated by differentiation. The regulation of G-protein expression in differentiating 3T3-L1 cells was probed at the level of mRNA by DNA-excess solution hybridization. Pertussis toxin-catalyzed ADP-ribosylation of G-protein alpha-subunits increased as fibroblasts differentiate to adipocytes. Steady-state levels of mRNA for Gi alpha 2 and Go alpha, in contrast, declined sharply. Immunoblotting with antipeptide antibodies specific for Gi alpha 2, too, revealed a decline in the steady-state expression of this pertussis toxin substrate. ADP-ribosylation of Gs alpha by cholera toxin was less in the adipocyte than fibroblast. Analysis by immunoblotting revealed only a modest decline in Gs alpha. Analysis of mRNA levels also demonstrated a decline for Gs alpha. mRNA levels for the G beta-subunits rose initially (25%) on day 1, declined from day 1 to day 3, and remained 25% lower in adipocytes than in fibroblasts. In 3T3-L1 adipocytes the molar amounts of subunit mRNAs were: 60.6 (Gs alpha); 2.1 (Gi alpha 2); and 1.5 (Go alpha) amol/microgram total cellular RNA. In rat fat cells these mRNA levels were 19.4 (Gs alpha); 7.0 (Gi alpha 2); and 2.3 (Go alpha). These data demonstrate that for Gi alpha 2 and Go alpha alike mRNA and protein expression decrease, not increase, in differentiation. A substrate for pertussis toxin other than Gi alpha 2 and Go alpha appears to be responsible for the increase in toxin-catalyzed labeling that accompanies differentiation of 3T3-L1 cells.  相似文献   

17.
Incubation of FRTL-5 rat thyroid cell membranes with [32P]NAD and pertussis toxin results in the specific ADP-ribosylation of a protein of about 40 kDa. This protein has the same molecular mass of the alpha i subunit of the adenylate cyclase regulatory protein Ni and is distinct from proteins ADP-ribosylated by cholera toxin in the same membranes. Prior treatment of FRTL-5 cells with pertussis toxin results in the ADP-ribosylation of Ni, as indicated by the loss of the toxin substrate in the ADP-ribosylation assay performed with membranes prepared from such cells. Preincubation of FRTL-5 cells with thyrotropin causes the same loss; cholera toxin has no such effect. Pertussis toxin, as do thyrotropin and cholera toxin, increases cAMP levels in FRTL-5 cells. Forskolin together with thyrotropin, cholera toxin or pertussis toxin causes a further increase in cAMP levels. Pertussis toxin and thyrotropin are not additive in their ability to increase adenylate cyclase activity, whereas both substances are additive with cholera toxin. A role of Ni in the thyrotropin regulation of the adenylate cyclase activity in thyroid cells is proposed.  相似文献   

18.
Cholera toxin- and pertussis toxin-catalyzed ADP-ribosylation were used to identify and localize G protein substrates in Drosophila melanogaster and in Manduca sexta. Cholera toxin catalyzes ADP-ribosylation of 37 kDa and 50 kDa polypeptides, but these polypeptides are also substrates for an ADP-ribosyltransferase (EC 2.4.2.30) activity endogenous to the Drosophila extracts. Pertussis toxin modifies 37 kDa and 39 kDa polypeptides in Drosophila homogenates. The pattern of proteolysis of the 39 kDa pertussis toxin substrate is similar to that of mammalian Go and is influenced by guanyl nucleotide binding. The 39 kDa Go-like Drosophila and Manduca pertussis toxin substrates are found primarily in neural tissues. These studies provide further evidence that G proteins are present in Drosophila and that this organism can therefore be used to investigate the physiological roles of these enzymes using advanced genetic manipulations.  相似文献   

19.
Pertussis toxin-sensitive guanine nucleotide-binding regulatory proteins (G proteins) have previously been shown to mediate the zona pellucida-induced acrosome reaction in mammalian sperm. In this study we compared the inhibitory effect of pertussis toxin on the zona-induced acrosome reaction in human spermatozoa with that on the reaction induced by progesterone, another physiological acrosome reaction-promoting stimulus associated with the ovulated oocyte. Up to the concentration of 1 μg/ml, pertussis toxin did not produce any direct effects on the acrosome reaction frequency nor did it influence sperm movement and viability. However, preincubation of spermatozoa with the toxin at a concentration of 100 ng/ml completely abolished the increase in the acrosome reaction frequency upon subsequent exposure to solubilized zona pellucida material. In contrast, the same treatment did not impair the ability of spermatozoa to initiate the acrosome reaction in response to progesterone. Moreover, the preincubation with pertussis toxin did not modify the changes in the intracellular concentration of calcium ions occurring after progesterone addition. These data suggest that different physiological stimuli may utilize different signal transduction pathways to induce the human sperm acrosome reaction. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Demonstration of the presence of G-proteins in hepatic microsomal fraction   总被引:5,自引:0,他引:5  
The presence of G-proteins in isolated hepatic microsomal vesicles is demonstrated. The G-proteins were identified by their capacity to be ADP-ribosylated by cholera and pertussis toxins. Cholera toxin identified 42 and 45 kDa proteins, corresponding to alpha s-1 and alpha s-2, respectively. Pertussis toxin identified a 40 kDa protein corresponding to alpha i. The microsomal G-proteins are identical to the corresponding G proteins of the plasma membrane, but are present in different proportions; the microsomes have considerably less alpha s proteins than the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号