首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calreticulin (CRT) is an abundant, soluble molecular chaperone of the endoplasmic reticulum. Similar to its membrane-bound homolog calnexin (CNX), it is a lectin that promotes the folding of proteins carrying N-linked glycans. Both proteins cooperate with an associated co-chaperone, the thiol-disulfide oxidoreductase ERp57. This enzyme catalyzes the formation of disulfide bonds in CNX and CRT-bound glycoprotein substrates. Previously, we solved the NMR structure of the central proline-rich P-domain of CRT comprising residues 189-288. This structure shows an extended hairpin topology, with three short anti-parallel beta-sheets, three small hydrophobic clusters, and one helical turn at the tip of the hairpin. We further demonstrated that the residues 225-251 at the tip of the CRT P-domain are involved in direct contacts with ERp57. Here, we show that the CRT P-domain fragment CRT(221-256) constitutes an autonomous folding unit, and has a structure highly similar to that of the corresponding region in CRT(189-288). Of the 36 residues present in CRT(221-256), 32 form a well-structured core, making this fragment one of the smallest known natural sequences to form a stable non-helical fold in the absence of disulfide bonds or tightly bound metal ions. CRT(221-256) comprises all the residues of the intact P-domain that were shown to interact with ERp57. Isothermal titration microcalorimetry (ITC) now showed affinity of this fragment for ERp57 similar to that of the intact P-domain, demonstrating that CRT(221-256) may be used as a low molecular mass mimic of CRT for further investigations of the interaction with ERp57. We also solved the NMR structure of the 73-residue fragment CRT(189-261), in which the tip of the hairpin and the first beta-sheet are well structured, but the residues 189-213 are disordered, presumably due to lack of stabilizing interactions across the hairpin.  相似文献   

2.
Jang HH  Lee KO  Chi YH  Jung BG  Park SK  Park JH  Lee JR  Lee SS  Moon JC  Yun JW  Choi YO  Kim WY  Kang JS  Cheong GW  Yun DJ  Rhee SG  Cho MJ  Lee SY 《Cell》2004,117(5):625-635
Although a great deal is known biochemically about peroxiredoxins (Prxs), little is known about their real physiological function. We show here that two cytosolic yeast Prxs, cPrxI and II, which display diversity in structure and apparent molecular weights (MW), can act alternatively as peroxidases and molecular chaperones. The peroxidase function predominates in the lower MW forms, whereas the chaperone function predominates in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causes the protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, Cys(47), which serves as an efficient "H(2)O(2)-sensor" in the cells. The chaperone function of these proteins enhances yeast resistance to heat shock.  相似文献   

3.
Calreticulin (CRT) is thought to be a molecular chaperone that interacts with glycoproteins exclusively through a lectin site specific for monoglucosylated oligosaccharides. However, this chaperone function has never been directly demonstrated nor is it clear how lectin-oligosaccharide interactions facilitate glycoprotein folding. Using purified components, we show that CRT suppresses the aggregation not only of a glycoprotein bearing monoglucosylated oligosaccharides but also that of non-glycosylated proteins. Furthermore, CRT forms stable complexes with unfolded, non-glycosylated substrates but does not associate with native proteins. ATP and Zn(2+) enhance CRT's ability to suppress aggregation of non- glycoproteins, whereas engagement of its lectin site with purified oligosaccharide attenuates this function. CRT also confers protection against thermal inactivation and maintains substrates in a folding-competent state. We conclude that in addition to being a lectin CRT possesses a polypeptide binding capacity capable of discriminating between protein conformational states and that it functions in vitro as a classical molecular chaperone.  相似文献   

4.
Chen M  Stafford WF  Diedrich G  Khan A  Bouvier M 《Biochemistry》2002,41(49):14539-14545
Tapasin is a type I membrane glycoprotein involved with other accessory proteins in the assembly of class I MHC-beta(2)m-peptide complexes in the endoplasmic reticulum. We have probed the three-dimensional structure of the lumenal region of human tapasin (residues 1-392) tagged with a (His)(6) sequence at its C-terminus using biochemical and biophysical techniques. The far-UV circular dichroism spectrum revealed that tapasin possesses well-defined secondary structural elements corresponding predominantly to beta-sheets. A thermal denaturation curve recorded at 216 nm showed a midpoint transition centered at approximately 45 degrees C. Sedimentation analysis showed that tapasin is monomeric in solution with a sedimentation coefficient, S degrees (20,w), of 2.68 S. This value of S degrees (20,w) combined with the value of the molar mass obtained by MALDI mass spectrometry (44.2 kDa) yielded a frictional ratio, f/f(0), of 1.47. Assuming tapasin is a prolate ellipsoid, we calculated an apparent length of 22.5 nm and a diameter of 2.62 nm, consistent with an elongated molecular shape. Controlled proteolysis using various enzymes revealed that a narrow region of tapasin near residue 90 is highly susceptible to digestion, resulting in two fragments that are resistant to further cleavage. The identity of these fragments was determined by amino acid sequencing and MALDI mass spectrometry and revealed a 9 kDa N-terminal fragment and a 34 kDa C-terminal fragment. Collectively, these results suggest that tapasin is comprised of two core domains of different sizes loosely linked by a flexible region.  相似文献   

5.
Li Z  Stafford WF  Bouvier M 《Biochemistry》2001,40(37):11193-11201
Calreticulin (CRT) is a soluble chaperone involved in the conformational maturation of glycoproteins in the endoplasmic reticulum. Using biochemical and biophysical techniques including circular dichroism, proteolysis, and analytical ultracentrifugation, we have determined the effects of calcium and zinc ions on the structural properties of human CRT. Circular dichroism analysis has shown that the binding of calcium and zinc ions to CRT induces no significant changes in the secondary structure of the protein but affects in very distinct ways the local tertiary packing of these elements. More specifically, these studies have revealed that CRT adopts a more rigid and thermally stable structure upon binding calcium ions and a more loosely packed and thermally destabilized structure upon binding zinc ions. Consistent with these results, proteolysis experiments demonstrated that the intrinsic conformational flexibility of CRT can be modulated toward either a decrease or an increase in susceptibility to cleavage by chymotrypsin upon binding calcium or zinc ions, respectively. Results from sedimentation analysis indicated that the global three-dimensional structure of CRT is essentially unchanged upon binding calcium ions. In marked contrast, CRT self-associates reversibly to form dimers upon binding zinc ions. Collectively, our results provide evidence that calcium and zinc ions induce strikingly different changes in the biochemical and structural properties of CRT.  相似文献   

6.
Thiol-based peroxiredoxins (Prxs) are conserved throughout all kingdoms. We have found that a conserved typical 2-Cys Prx-like protein (PaPrx) from Pseudomonas aeruginosa bacteria displays diversity in its structure and apparent molecular weight (MW), and can act alternatively as a peroxidase and molecular chaperone. We have also identified a regulatory factor involved in this structural and functional switching. Exposure of P. aeruginosa to hydrogen peroxide (H2O2) causes PaPrx to convert from a high MW (HMW) complex to a low MW (LMW) form, which triggers a chaperone to peroxidase functional switch. This structural switching is primarily guided by either the thioredoxin (Trx) or glutathione (GSH) systems. Furthermore, comparison of our structural data [native and non-reducing polyacrylamide gel electrophoresis (PAGE) analysis, size exclusion chromatography (SEC) analysis, and electron microscopy (EM) observations] and enzymatic analyses (peroxidase and chaperone assay) revealed that the formation of oligomeric HMW complex structures increased chaperone activity of PaPrx. These results suggest that multimerization of PaPrx complexes promotes chaperone activity, and dissociation of the complexes into LMW species enhances peroxidase activity. Thus, the dual functions of PaPrx are clearly associated with their ability to form distinct protein structures.  相似文献   

7.
Four regenerated silk fibroin (SF) samples were prepared under different dissolution conditions and their molecular weight (MW) distributions and solution properties in water and formic acid were examined. SFL, produced by dissolving in LiBr aqueous solution for 6h, showed the highest MW level. In the three SFC samples, produced by dissolving SF in CaCl(2)/H(2)O/EtOH solution for dissolution times ranging from 3 to 180 min, the MW of the SFs decreased with increasing dissolution time and a new band appeared at low MW. Interestingly, SFL presented as a relatively transparent aqueous solution with 10-30 nm particle size, whereas the three SFC samples exhibited a turbid solution with 100-300 nm particle size. SF formic acid solutions showed a higher viscosity than SF aqueous solutions and exhibited almost Newtonian fluid behavior, whereas SF aqueous solutions displayed abrupt shear thinning in the low shear rate region (0.1-3 s(-1)).  相似文献   

8.
The ER resident protein calreticulin fulfills at least two important roles. It works as a chaperone preventing Golgi exit of non-native protein species and enhancing protein folding efficiency in either N-glycan-dependent, lectin chaperone, or classical chaperone, N-glycan-independent, modes and is one of the main calcium buffers in the cell. This last feature is independent from the lectin chaperone properties of the protein as this last activity is also observed in a CRT fragment lacking calcium buffer capacity. Here we study the interplay between calcium and the lectin and chaperone activities of CRT. The affinity of CRT for monoglucosylated glycans measured in solution by equilibrium dialysis and fluorescence anisotropy was not affected by the absence of calcium. Binding of CRT to monoglucosylated neoglycoproteins displaying either native or molten globule-like conformations was also independent of calcium concentration. Moreover, calcium and monoglucosylated glycans stabilized the CRT structure in an apparent additive, independent manner when the protein was subjected to thermal or urea-induced denaturation. In addition, the ability of CRT to decrease the level of aggregation of a chemically denatured monoglucosylated and nonglycosylated protein was also independent of calcium level.  相似文献   

9.
Calreticulin (CRT) is a Ca2+-binding molecular chaperone in the endoplasmic reticulum. We cloned and characterized the CRT gene in an important marine food fish species Asian seabass (Lates calcarifer). The full-length DNA of the CRT gene was 2194 bp, including a complete open reading frame encoding 420 amino acid residues, a 113 bp 5'-untranslated region and an 818 bp 3'-untranslated region. The CRT gene contained nine exons and eight introns covering a total of 2772 bp genomic DNA from the start to stop codon. Ten single nucleotide polymorphisms (SNPs) were detected in introns and an exon in six individuals collected from five different locations. The CRT gene was assigned to linkage group 4 of the linkage map of Asian seabass. Quantitative real-time PCR revealed that the CRT gene was highly expressed in liver at the age of 1, 3 and 7 months under normal conditions, whereas its expression in liver reduced sharply after 0.5 to 2 h cold challenge at 16°C, and then increased slowly. A preliminary association analysis showed a significant (P < 0.001) association between the SNP6 in the CRT gene and the mortality after cold challenge at 16°C. Our results suggest that the CRT gene is associated with cold tolerance of Asian seabass and further investigation will be necessary to illustrate the underlying mechanisms.  相似文献   

10.
To study the structural change of diphtheria toxin (DT) induced by low pH and its influence on the interaction with membrane lipids, protein and lipid monolayers were formed and characterized. DT at neutral and acidic pH forms stable monolayers, whose surface-pressure-increase curves allow an estimation of the apparent molecular area of 29.5 nm2/molecule at pH 7.4 (corresponding to a radius of 3.06 nm) and 34.5 nm2/molecule at pH 5.0 (corresponding to a radius of 3.32 nm). DT at pH 7.4 does not insert into phospholipid monolayers, while at pH 5.0 it penetrates into the lipid layer with a portion of apparent molecular area of 21.0 nm2/molecule (corresponding to a radius of 2.6 nm). The low-pH driven lipid interaction of the toxin is favoured by the presence of acidic phospholipids, without an apparent requirement for a particular class of negative lipids. The DT mutants crm 45 and crm 197 are capable of hydrophobic interaction already at neutral pH and cause an increase of surface pressure with a further increase upon acidification.  相似文献   

11.
The relationship among protein oligomerization, secondary structure at the interface, and the interfacial behavior was investigated for spread layers of native pulmonary surfactant associated proteins B and C. SP-B and SP-C were isolated either from butanol or chloroform/methanol lipid extracts that were obtained from sheep lung washings. The proteins were separated from other components by gel exclusion chromatography or by high performance liquid chromatography. SDS gel electrophoresis data indicate that the SP-B samples obtained using different solvents showed different oligomerization states of the protein. The CD and FTIR spectra of SP-B isolated from all extracts were consistent with a secondary structure dominated by alpha-helix. The CD and FTIR spectra of the first SP-C corresponded to an alpha-helical secondary structure and the spectra of the second SP-C corresponded to a mixture of alpha-helical and beta-sheet conformation. In contrast, the spectra of the third SP-C corresponded to antiparallel beta-sheets. The interfacial behavior was characterized by surface pressure/area (pi-A) isotherms. Differences in the oligomerization state of SP-B as well as in the secondary structure of SP-C all produce significant differences in the surface pressure/area isotherms. The molecular cross sections determined from the pi-A isotherms and from dynamic cycling experiments were 6 nm(2)/dimer molecule for SP-B and 1.15 nm(2)/molecule for SP-C in alpha-helical conformation and 1.05 nm(2)/molecule for SP-C in beta-sheet conformation. Both the oligomer ratio of SP-B and the secondary structure of SP-C strongly influence organization and behavior of these proteins in monolayer assemblies. In addition, alpha-helix --> beta-sheet conversion of SP-C occurs simply by an increase of the summary protein/lipid concentration in solution.  相似文献   

12.
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.  相似文献   

13.
Structure and hydrodynamic properties of plectin molecules   总被引:15,自引:0,他引:15  
Plectin is a cytoskeletal, high molecular weight protein of widespread and abundant occurrence in cultured cells and tissues. To study its molecular structure, the protein was purified from rat glioma C6 cells and subjected to chemical and biophysical analyses. Plectin's polypeptide chains have an apparent molecular weight of 300,000, as shown by one-dimensional sodium dodecyl sulfate/polyacrylamide electrophoresis. Cross-linking of non-denatured plectin in solution with dimethyl suberimidate and electrophoretic analyses on sodium dodecyl sulfate/agarose gels revealed that the predominant soluble plectin species was a molecule of 1200 X 10(3) Mr consisting of four 300 X 10(3) Mr polypeptide chains. Hydrodynamic properties of plectin in solution were obtained by sedimentation velocity centrifugation and high-pressure liquid chromatography analysis yielding a sedimentation coefficient of 10 S and a Stokes radius of 27 nm. The high f/fmin ratio of 4.0 indicated a very elongated shape of plectin molecules and an axial ratio of about 50. Shadowing and negative staining electron microscopy of plectin molecules revealed multiple domains: a rigid rod of 184 nm in length and 2 nm in diameter, and two globular heads of 9 nm diameter at each end of the rod. Circular dichroism spectra suggested a composition of 30% alpha-helix, 9% beta-structure and 61% random coil or aperiodic structure. The rod-like shape, the alpha-helix content as well as the thermal transition within a midpoint of 45 degrees C and the transition enthalpy (168 kJ/mol) of secondary structure suggested a double-stranded, alpha-helical coiled coil rod domain. Based on the available data, we favor a model of native plectin as a dumb-bell-like association of four 300 X 10(3) Mr polypeptide chains. Electron microscopy and turbidity measurements showed that plectin molecules self-associate into various oligomeric states in solutions of nearly physiological ionic strength. These interactions apparently involved the globular end domains of the molecule. Given its rigidity and elongated shape, and its tendency towards self-association, plectin may well be an interlinking element of the cytoskeleton that may also form a network of its own.  相似文献   

14.
Calreticulin (CRT) is a chaperone of the endoplasmic reticulum. We dissected CRT into its two structural domains, N-/C-domain and P-domain, to identify its metal ion-responsive region. For this, we constructed bacterial expression systems for the N-/C-domain (1-180 fused by a linker to 290-400) and P-domain (189-280). Circular dichroism (CD) studies showed that calcium ions increased tertiary packing and thermal stability of apo N-/C-domain, whereas zinc ions had a strong destabilizing effect. Interestingly, neither calcium nor zinc ions altered the structural properties of apo P-domain. These results indicate that the calcium- and zinc-responsive regions reside strictly in the N-/C-domain. Analysis of thermal denaturation curves of CRT, N-/C-domain, and P-domain suggested a structural role for the P-domain in CRT. Rotary shadowing electron microscopy (EM) analysis of CRT and calnexin provided convincing evidence for their structural relatedness. This analysis also revealed that apo P-domain adopts various curved shapes suggesting conformational flexibility. EM images of apo N-/C-domain revealed objects having wide gaps suggesting weak interactions between the N- and C-domains. This is consistent with the larger size of apo N-/C-domain on the gel filtration column. Our studies provide a framework for correlating the structural organization of CRT with its metal ion-responsive region.  相似文献   

15.
Rigers Bakiu 《Biologia》2014,69(3):270-280
Calreticulin (CRT) is a low molecular weight protein present in vertebrates, invertebrates and higher plants. Its multiple functions have been demonstrated. It plays an important role as a chaperone and Ca2+ buffer inside sarcoplasmic/endoplasmic reticulum (SR/ER), and outside the ER in many physiological/pathological processes. Recently it has been observed that CRT over-expression or its absence is linked to various pathological conditions, such as malignant evolution and progression, and these facts really increased its study interests. Using an evolution approach CRT was further characterized. Several Bayesian phylogenetic analyses were performed using coding and amino acid sequences. CRT molecular evolution was investigated for the presence of negative or/and positive selection using HyPhy package. The results indicated that the purifying selection might have operated over the whole CRT primary structure. Although, an episodic diversifying selection was also found on the analyzed CRT sequences.  相似文献   

16.
Jang HH  Kim SY  Park SK  Jeon HS  Lee YM  Jung JH  Lee SY  Chae HB  Jung YJ  Lee KO  Lim CO  Chung WS  Bahk JD  Yun DJ  Cho MJ  Lee SY 《FEBS letters》2006,580(1):351-355
The H2O2-catabolizing peroxidase activity of human peroxiredoxin I (hPrxI) was previously shown to be regulated by phosphorylation of Thr90. Here, we show that hPrxI forms multiple oligomers with distinct secondary structures. HPrxI is a dual function protein, since it can behave either as a peroxidase or as a molecular chaperone. The effects of phosphorylation of hPrxI on its protein structure and dual functions were determined using site-directed mutagenesis, in which the phosphorylation site was substituted with aspartate to mimic the phosphorylated status of the protein (T90D-hPrxI). Phosphorylation of the protein induces significant changes in its protein structure from low molecular weight (MW) protein species to high MW protein complexes as well as its dual functions. In contrast to the wild type (WT)- and T90A-hPrxI, the T90D-hPrxI exhibited a markedly reduced peroxidase activity, but showed about sixfold higher chaperone activity than WT-hPrxI.  相似文献   

17.
A wide range of values has been reported for the subunit and molecular weights of smooth muscle caldesmon. There have also been conflicting reports concerning whether caldesmon is a monomer or dimer. We attempted to resolve these uncertainties by determining the molecular weight of chicken gizzard smooth muscle caldesmon using the technique of sedimentation equilibrium in the analytical ultracentrifuge. Unlike previous methods that have been used to estimate the molecular weight of caldesmon, the molecular weight determined by equilibrium sedimentation does not depend upon assumptions about the shape of the molecule. We concluded that caldesmon in solution is monomeric with a molecular mass of 93 +/- 4 kDa, a value that is much less than those previously reported in the literature. This new value, in conjunction with sedimentation velocity experiments, led to the conclusion that caldesmon is a highly asymmetric molecule with an apparent length of 740 A in solution. The mass of a cyanogen bromide fragment, with an apparent mass of 37 kDa from sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was determined to be 25.1 +/- 0.6 kDa using sedimentation equilibrium. These results imply that the reported molecular weights of other fragment(s) of caldesmon have also been overestimated. We have determined an optical extinction coefficient for caldesmon (E1%(280 nm) = 3.3) by determining its concentration from its refractive index which was measured in the analytical ultracentrifuge. From the above values of the molecular weight and the extinction coefficient, we redetermined that the caldesmon molecule has two cysteines and recalculated the stoichiometric molar ratio of actin/tropomyosin/caldesmon in the smooth muscle thin filament to be 28:4:1.  相似文献   

18.
Calreticulin (CRT) is a highly versatile lectin-like chaperone that affects many cellular functions both inside and outside the endoplasmic reticulum lumen. We previously reported that calreticulin interacts with several protein kinase C isozymes both in vitro and in vivo. The aim of this study was to elucidate the molecular determinants involved in the association between these proteins and the biochemical significance of their interaction. Using full-length or CRT-domain constructs expressed as GST-fusion proteins, we found that protein kinase C binds to the CRT N domain in overlay and pull-down assays. Phosphorylation experiments showed that only this CRT domain is phosphorylated by the kinase. Lectin blot analysis demonstrated that CRT is modified by N-glycosylation, but this modification did not affect its interaction with protein kinase C. We also demonstrated that although both domains of protein kinase C theta can bind to CRT, it is the catalytic one that binds with higher affinity to CRT. Immunofluorescence studies showed that CRT and PKC co-localize mainly at the ER (estimated in 35%). Activation of protein kinase C induced caused transient changes in CRT localization, and unexpectedly, also induced changes in posttranslational modifications found in the protein: CRT N-glycosylation is abolished, whereas tyrosine phosphorylation and O-linked β-N-acetylglucosamine modification are increased. Together, these findings suggest that protein kinase C is involved in the regulation of CRT function.  相似文献   

19.
Domain structure of the HSC70 cochaperone, HIP.   总被引:1,自引:0,他引:1  
The domain structure of the HSC70-interacting protein (HIP), a 43-kDa cytoplasmic cochaperone involved in the regulation of HSC70 chaperone activity and the maturation of progesterone receptor, has been probed by limited proteolysis and biophysical and biochemical approaches. HIP proteolysis by thrombin and chymotrypsin generates essentially two fragments, an NH2-terminal fragment of 25 kDa (N25) and a COOH-terminal fragment of 18 kDa (C18) that appear to be well folded and stable as indicated by circular dichroism and recombinant expression in Escherichia coli. NH2-terminal amino acid sequencing of the respective fragments indicates that both proteases cleave HIP within a predicted alpha-helix following the tetratricopeptide repeat (TPR) region, despite their different specificities and the presence of several potential cleavage sites scattered throughout the sequence, thus suggesting that this region is particularly accessible and may constitute a linker between two structural domains. After size exclusion chromatography, N25 and C18 elute as two distinct and homogeneous species having a Stokes radius of 49 and 24 A, respectively. Equilibrium sedimentation and sedimentation velocity indicate that N25 is a stable dimer, whereas C18 is monomeric in solution, with sedimentation coefficients of 3.2 and 2.3 S and f/f(o) values of 1.5 and 1.1 for N25 and C18, respectively, indicating that the N25 is elongated whereas C18 is globular in shape. Both domains are able to bind to the ATPase domain of HSC70 and inhibit rhodanese aggregation. Moreover, their effects appear to be additive when used in combination, suggesting a cooperation of these domains in the full-length protein not only for HSC70 binding but also for chaperone activity. Altogether, these results indicate that HIP is made of two structural and functional domains, an NH2-terminal 25-kDa domain, responsible for the dimerization and the overall asymmetry of the molecule, and a COOH-terminal 18-kDa globular domain, both involved in HSC70 and unfolded protein binding.  相似文献   

20.
Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaper-one. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号