首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of the human complement regulatory protein CD59 to interact with terminal complement proteins in a species-selective manner was examined. When incorporated into chicken E, CD59 (purified from human E membranes) inhibited the cytolytic activity of the C5b-9 complex in a manner dependent on the species of origin of C8 and C9. Inhibition of C5b-9-mediated hemolysis was maximal when C8 and C9 were derived from human (hu) or baboon serum. By contrast, CD59 showed reduced activity when C8 and C9 were derived from dog or sheep serum, and no activity when C8 and C9 were derived from either rabbit or guinea pig (gp) serum. Similar specificity on the basis of the species of origin of C8 and C9 was also observed for CD59 endogenous to the human E membrane, using functionally blocking antibody against this cell surface protein to selectively abrogate its C5b-9-inhibitory activity. When E bearing human CD59 were exposed to C5b-8hu, CD59 was found to inhibit C5b-9-mediated lysis, regardless of the species of origin of C9, suggesting that the inhibitory function of CD59 can be mediated through recognition of species-specific domains expressed by human C8. Consistent with this interpretation, CD59 was found to bind to C5b-8hu but not to C5b67hu or C5b67huC8gp. Although CD59 failed to inhibit hemolysis mediated by C5b67huC8gpC9gp, its inhibitory function was observed for C5b67huC8gpC9hu, suggesting that, in addition to its interaction with C5b-8hu, CD59 also interacts in a species-selective manner with C9hu incorporated into C5b-9. Consistent with this interpretation, CD59 was found to bind both C5b67huC8gpC9hu and C5b-8huC9gp, but not C5b67huC8gpC9gp. Taken together, these data suggest that the capacity of CD59 to restrict the hemolytic activity of human serum complement involves a species-selective interaction of CD59, which involves binding to both the C8 and C9 components of the membrane attack complex. Although CD59 expresses selectivity for C8 and C9 of human origin, this "homologous restriction" is not absolute, and this human complement regulatory protein retains functional activity toward C8 and C9 of some nonprimate species.  相似文献   

2.
CD59 is a 77-amino acid membrane glycoprotein that plays an important role in regulating the terminal pathway of complement by inhibiting formation of the cytolytic membrane attack complex (MAC or C5b-9). The MAC is formed by the self assembly of C5b, C6, C7, C8, and multiple C9 molecules, with CD59 functioning by binding C5b-8 and C5b-9 in the assembling complex. We performed a scanning alanine mutagenesis screen of residues 16-57, a region previously identified to contain the C8/C9 binding interface. We have also created an improved NMR model from previously published data for structural understanding of CD59. Based on the scanning mutagenesis data, refined models, and additional site-specific mutations, we identified a binding interface that is much broader than previously thought. In addition to identifying substitutions that decreased CD59 activity, a surprising number of substitutions significantly enhanced CD59 activity. Because CD59 has significant therapeutic potential for the treatment of various inflammatory conditions, we investigated further the ability to enhance CD59 activity by additional mutagenesis studies. Based on the enhanced activity of membrane-bound mutant CD59 molecules, clinically relevant soluble mutant CD59-based proteins were prepared and shown to have up to a 3-fold increase in complement inhibitory activity.  相似文献   

3.
Gene-deleted mice have provided a potent tool in efforts to understand the roles of complement and complement-regulating proteins in vivo. In particular, mice deficient in the membrane regulators complement receptor 1-related gene/protein y, decay-accelerating factor, or CD59 have demonstrated homeostatic relevance and backcrossing between the strains has revealed cooperativity in regulation. In mouse, genes encoding decay-accelerating factor and CD59 have been duplicated and show differential expression in tissues, complicating interpretation and extrapolation of findings to man. The first described form of CD59, CD59a, is broadly distributed and deletion of the cd59a gene causes a mild hemolytic phenotype with increased susceptibility in complement-mediated disease models. The distribution of the second form, CD59b, was originally described as testis specific, but later by some as widespread. Deletion of the cd59b gene caused a severe hemolytic and thrombotic phenotype. To apply data from these mouse models to man it is essential to know the relative distribution and functional roles of these two forms of CD59. We have generated new specific reagents and used them in sensitive quantitative analyses to comprehensively characterize expression of mRNA and protein and functional roles of CD59a and CD59b in wild-type (wt) and CD59a-negative mice. cd59b mRNA was detected only in testis and, at very low levels, in bone marrow. CD59b protein was present on mature spermatozoa and precursors and, in trace amounts, erythrocytes. Erythrocyte CD59b did not inhibit complement lysis except when CD59a was absent or blocked. These data confirm that CD59a is the primary regulator of complement membrane attack in mouse.  相似文献   

4.
5.
CD59 blocks formation of the membrane attack complex of complement by inhibiting binding of C9 to the C5b-8 complex. To investigate a role for CD59 in promoting T cell responses, we compared T cell activation in CD59a-deficient (Cd59a-/-) and wild-type (WT) mice after in vitro stimulation and after infection with rVV. Virus-specific CD4+ T cell responses were significantly enhanced in Cd59a-/- mice compared with WT mice. Similarly, Cd59a-/- T cells responded more vigorously to in vitro stimulation with CD3-specific Abs compared with WT mice. This effect of CD59a on T cell proliferation was found to be complement-independent. Collectively, these results demonstrate that CD59a down-modulates CD4+ T cell activity in vitro and in vivo, thereby revealing another link between complement regulators and T cell activation.  相似文献   

6.
Protection against the pore-forming activity of the human C5b-9 proteins was conferred on a nonprimate cell by transfection with cDNA encoding the human complement regulatory protein CD59. CD59 was stably expressed in Chinese hamster ovary cells using the pFRSV mammalian expression vector. After cloning and selection, the transfected cells were maintained in media containing various concentrations of methotrexate, which induced surface expression of up to 4.2 x 10(6) molecules of CD59/cell. Phosphatidylinositol-specific phospholipase C removed greater than 95% of surface-expressed CD59 antigen, confirming that recombinant CD59 was tethered to the Chinese hamster ovary plasma membrane by a lipid anchor. The recombinant protein exhibited an apparent molecular mass of 21-24 kDa (versus 18-21 kDa for human erythrocyte CD59). After N-glycanase digestion, recombinant and erythrocyte CD59 comigrated with apparent molecular masses of 12-14 kDa, suggesting altered structure of asparagine-linked carbohydrate in recombinant versus erythrocyte CD59. The function of the recombinant protein was evaluated by changes in the sensitivity of the CD59 transfectants to the pore-forming activity of human C5b-9. Induction of cell-surface expression of CD59 antigen inhibited C5b-9 pore formation in a dose-dependent fashion. CD59 transfectants expressing greater than or equal to 1.2 x 10(6) molecules of CD59/cell were completely resistant to human serum complement. By contrast, CD59 transfectants remained sensitive to the pore-forming activity of guinea pig C8 and C9 (bound to human C5b67). Functionally blocking antibody against erythrocyte CD59 abolished the human complement resistance observed for the CD59-transfected Chinese hamster ovary cells. These results confirm that the C5b-9 inhibitory function of the human erythrocyte membrane is provided by CD59 and suggest that the gene for this protein can be expressed in xenotypic cells to confer protection against human serum complement.  相似文献   

7.
Protectin (CD59) is a complement regulatory protein which blocks the membrane attack complex during complement activation. CD59 was identifield on the human sperm surface by means of H19, an IgG1 anti-protectin mouse monoclonal antibody. Using Indirect immunofluorescence, flow cytometry and immunoperoxidase, CD59 was found to be present on the whole plasma membrane including the head and tail of fresh ejaculated, capacitated and acrosome-reacted spermatozoa. Immunoperoxidase staining of normal testicular sections indicated that this protein was already present on intraluminal germ cells. Analysis of this sperm protein by gel electrophoresis and immunoblotting revealed that its molecular weight of 20 kDa was comparable to that of CD59 expressed on peripheral blood cells (erythrocytes, lymphocytes) and that it was bound to the membrane through a glycophospholipid tail which could be released after treatment with phosphatidylinositol-specific phospholipase C. Associated to membrane cofactor protein (CD46) and decay accelerating factor (CD55) located in the acrosomal membranes, CD59 may participate to the protection of male gametes against complement-mediated damage as they travel through the female genital tract. Moreover CD59, known as an adhesion molecule involved in lymphocyte rosettes, may also participate in cell to cell adhesion during gametic interaction since H19 inhibited sperm binding and reduced the penetration rate and index during the hamster egg penetration test. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Critical protection from renal ischemia reperfusion injury by CD55 and CD59   总被引:11,自引:0,他引:11  
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We engineered mice deficient in two membrane complement regulatory proteins, CD55 and CD59, and used them to investigate the role of these endogenous complement inhibitors in renal IRI. CD55-deficient (CD55(-/-)), but not CD59-deficient (CD59(-/-)), mice exhibited increased renal IRI as indicated by significantly elevated blood urea nitrogen levels, histological scores, and neutrophil infiltration. Remarkably, although CD59 deficiency alone was inconsequential, CD55/CD59 double deficiency greatly exacerbated IRI. Severe IRI in CD55(-/-)CD59(-/-) mice was accompanied by endothelial deposition of C3 and the membrane attack complex (MAC) and medullary capillary thrombosis. Complement depletion in CD55(-/-)CD59(-/-) mice with cobra venom factor prevented these effects. Thus, CD55 and CD59 act synergistically to inhibit complement-mediated renal IRI, and abrogation of their function leads to MAC-induced microvascular injury and dysfunction that may exacerbate the initial ischemic assault. Our findings suggest a rationale for anti-complement therapies aimed at preventing microvascular injury during ischemia reperfusion, and the CD55(-/-)CD59(-/-) mouse provides a useful animal model in this regard.  相似文献   

9.
We have shown that membrane attack complex (MAC) formation via the activation of the alternative pathway plays a central role in the laser-induced choroidal neovascularization (CNV). This study was undertaken to understand the role of a complement regulatory protein, CD59, which controls MAC assembly and function, in this model. CNV was induced by laser photocoagulation in C57BL/6 and Cd59a(-/-) mice using an argon laser. Animals from each group were sacrificed on day 1, 3, 5, and 7 postlaser. Retinal pigment epithelium-choroid-scleral tissue was examined to determine the incidence and size of CNV complex, and semiquantitative RT-PCR and Western blot analysis for CD59a was studied. Recombinant soluble mouse CD59a-IgG2a fusion (rsCD59a-Fc) protein was injected via i.p. or intravitreal routes 24 h before laser. Our results demonstrated that CD59a (both mRNA and protein) was down-regulated during laser-induced CNV. Cd59a(-/-) mice developed CNV complex early in the disease process. Increased MAC deposition was also observed in these Cd59a(-/-) mice. Administration of rsCD59a-Fc inhibited the development of CNV complex in the mouse model by blocking MAC formation and also inhibited expression of angiogenic growth factors. These data provide strong evidence that CD59a plays a crucial role in regulating complement activation and MAC formation essential for the release of growth factors that drive the development of laser-induced CNV in mice. Thus, our results suggest that the inhibition of complement by soluble CD59 may provide a novel therapeutic alternative to current treatment.  相似文献   

10.
CD59 is a crucial complement regulatory protein that inhibits the terminal step of the complement activation cascade by interfering with the binding of C9 to C5b-8, thus preventing the formation of the membrane attack complex (MAC). We recently reported that the mouse genome contains two Cd59 genes, while the human and rat genomes each contain only one Cd59 gene (Qian et al. 2000). Here, we describe the genomic structure, comparative activity, and tissue distribution of these two mouse genes, designated Cd59a and Cd59b. The mouse Cd59 genes encompass a total of 45.6 kb with each gene having four exons. Cd59a spans 19 kb, and Cd59b spans 15 kb, with approximately 11.6 kb of genomic DNA separating the two genes. The overall sequence similarity between Cd59a and Cd59b is approximately 60%. The sequence similarity between exon 2, exon 3, and exon 4 and the respective flanking regions between the two genes is over 85%, but exon 1 and its flanking regions are totally different. Comparative studies of the activity of both genes as inhibitors of MAC formation revealed that Cd59b has a specific activity that is six times higher than that of Cd59a. Using polyclonal antibodies specific to either Cd59a or Cd59b, we showed that Cd59a and Cd59b are both widely expressed in the kidneys, brain, lungs, spleen, and testis, as well as in the blood vessels of most mouse tissues. Interestingly, testicular Cd59a appeared to be expressed exclusively in spermatids, whereas Cd59b was expressed in more mature sperm cells. These results suggest that even though Cd59a and Cd59b are expressed in multiple tissues, they may play some different roles, particularly in reproduction. Received: 9 February 2001 / Accepted: 18 April 2001  相似文献   

11.
The erythrocyte membrane inhibitor of the human terminal complement proteins, surface antigen CD59, has previously been shown to enter into a detergent-resistant complex with either the membrane-bound complex of C5b-8 or C5b-9 (Meri, S., Morgan, B. P., Davies, A., Daniels, R. H., Olavesen, M. G., Waldmann, H. and Lachmann, P. J. (1990) Immunology 71, 1-9; Rollins, S. A., Zhao, J., Ninomiya, H., and Sims, P. J. (1991) J. Immunol, 146, 2345-2351). In order to further define the interactions that underlie the complement-inhibitory function of CD59, we have examined the binding interactions between 125I-CD59 and the isolated components of human complement membrane attack complex, C5b6, C7, C8, and C9. By density gradient analysis, we were unable to detect interaction of 125I-CD59 with any of these isolated complement components in solution. Specific binding of 125I-CD59 to C8 and C9 was detected when these human complement proteins were adsorbed to either plastic or to nitrocellulose, suggesting that a conformational change that accompanies surface adsorption exposes a CD59-binding site that is normally buried in these serum proteins. The binding of 125I-CD59 to plastic-adsorbed C8 and C9 was saturable and competed by excess unlabeled CD59, with half-maximal binding observed at 125I-CD59 concentrations of 80 and 36 nM, respectively. No specific binding of 125I-CD59 was detected for surface-adsorbed human C5b6 or C7 nor was such binding observed for C8 or C9 isolated from rabbit serum. Binding of CD59 to human C8 and C9 was not mediated by the phospholipid moiety of CD59, implying association by protein-protein interaction. In order to further define the binding sites for CD59, ligand blotting with 125I-CD59 was performed after separation of C8 into its noncovalently associated subunits (C8 alpha-gamma and C8 beta) and after alpha-thrombin digestion of C9. These experiments revealed specific and saturable binding of 125I-CD59 to C8 alpha-gamma subunit (half-maximal binding at 75 nM), but not to C8 beta, and specific and saturable binding to the 37-kDa fragment (C9b) of thrombin-cleaved C9 (half-maximal binding at 35 nM), but not to the 25-kDa C9a fragment. Partial reduction of C8 alpha-gamma revealed that only C8 alpha polypeptide exhibited affinity for CD59, and no specific binding to the C8 gamma chain was detected.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Inappropriate activation of complement on the vascular endothelium of specific organs, or systemically, underlies the etiology of a number of diseases. These disorders include atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, atherosclerosis, age-related macular degeneration, diabetic retinopathy, and transplant rejection. Inhibition of the terminal step of complement activation, i.e. formation of the membrane attack complex, using CD59 has the advantage of retaining the upstream processes of the complement cascade necessary for fighting pathogens and retaining complement's crucial role in tissue homeostasis. Previous studies have shown the necessity of membrane targeting of soluble CD59 in order for it to prove an effective inhibitor of complement deposition both in vitro and in vivo. In this study we have generated an in vivo model of human complement activation on murine liver vascular endothelium. This model should prove useful for the development of anti-complement therapies for complement-induced pathologies of vascular endothelium. Using this model, we have demonstrated the viability of a non membrane-targeted soluble CD59 to significantly inhibit complement deposition on the endothelium of murine liver vasculature when expressed in vivo from an adenovirus. This result, unanticipated based on prior studies, suggests that the use of non membrane-targeted sCD59 as an anti-complement therapy be re-visited.  相似文献   

13.
14.
A human E membrane protein that inhibits lysis by the purified human C5b-9 proteins was isolated and characterized. After final purification, the protein migrated as an 18- to 20-kDa band by SDS-PAGE. Elution from gel slices and functional assay after SDS-PAGE (nonreduced) confirmed that all C5b-9 inhibitory activity of the purified protein resided in the 18- to 20-kDa band. Phosphatidylinositol-specific phospholipase C digestion of the purified protein abolished 50% of its C5b-9 inhibitory activity, and removed approximately 15% of the protein from human E. Western blots of normal and paroxysmal nocturnal hemoglobinuria E revealed an absence of the 18- to 20-kDa protein in the paroxysmal nocturnal hemoglobinuria E cells. The identity of this E protein with leukocyte Ag CD59 (P18, HRF20) was confirmed immunochemically and by N-terminal amino acid sequence analysis. A blocking antibody raised against the purified protein reacted with a single 18- to 20-kDa band on Western blots of human erythrocyte membranes. Prior incubation of human E with the F(ab) of this antibody increased subsequent lysis by the purified human C5b-9 proteins. Potentiation of C5b-9-mediated lysis was observed when erythrocytes were preincubated with this blocking antibody before C5b-9 assembly was initiated, or, when this antibody was added after 30 min, 0 degrees C incubation of C5b-8-treated E with C9. Chicken E incubated with purified CD59 were used to further characterize the mechanism of its C-inhibitory activity. Preincorporation of CD59 into these cells inhibited lysis by C5b-9, regardless of whether CD59 was added before or after assembly of the C5b-8 complex. When incorporated into the membrane, CD59 inhibited binding of 125I-C9 to membrane C5b-8 and reduced the extent of formation of SDS-resistant C9 polymer. The inhibitory effect of CD59 on 125I-C9 incorporation was most pronounced at near-saturating input of C9 (to C5b-8). By contrast, CD59 did not inhibit either C5b67 deposition onto the cell surface, or, binding of 125I-C8 to preassembled membrane C5b67. Taken together, these data suggest that CD59 exerts its C-inhibitory activity by limiting incorporation of multiple C9 into the membrane C5b-9 complex.  相似文献   

15.
Defining the CD59-C9 binding interaction   总被引:3,自引:0,他引:3  
CD59 is a membrane glycoprotein that regulates formation of the cytolytic membrane attack complex (MAC or C5b-9) on host cell membranes. It functions by binding to C8 (alpha chain) and C9 after their structural rearrangement during MAC assembly. Previous studies indicated that the CD59 binding site in C9 was located within a 25-residue disulfide-bonded loop, and in C8alpha was located within a 51-residue sequence that overlaps the CD59 binding region of C9. By peptide screens and the use of peptides in binding assays, functional assays, and computer modeling and docking studies, we have identified a 6-residue sequence of human C9, spanning residues 365-371, as the primary CD59 recognition domain involved in CD59-mediated regulation of MAC formation. The data also indicate that both C8alpha and C9 bind to a similar or overlapping site on CD59. Furthermore, data from CD59-peptide docking models are consistent with the C9 binding site on CD59 located at a hydrophobic pocket, putatively identified previously by CD59 mutational and modeling studies.  相似文献   

16.
Cells resist death induced by the complement membrane attack complex (MAC, C5b-9) by removal of the MAC from their surface by an outward and/or inward vesiculation. To gain an insight into the route of MAC removal, human C9 was tagged with Alexa Fluor 488 and traced within live cells. Tagged C9-AF488 was active in lysis of erythrocytes and K562 cells. Upon treatment of K562 cells with antibody and human serum containing C9-AF488, C9-AF488 containing MAC bound to the cells. Within 5-10 min, the cells started shedding C5b-9-loaded vesicles (0.05-1 mum) by outward vesiculation. Concomitantly, C9-AF488 entered the cells and accumulated in a perinuclear, late recycling compartment, co-localized with endocytosed transferrin-Texas Red. Similar results were obtained with fixed cells in which the MAC was labeled with antibodies directed to a C5b-9 neoepitope. Inhibition of protein kinase C reduced endocytosis of C5b-9. Kinetic analysis demonstrated that peripheral, trypsin-sensitive C5b-9 was cleared from cells at a slower rate relative to fully inserted, trypsin-resistant C5b-9. MAC formation is controlled by CD59, a ubiquitously expressed membrane complement regulator. Analysis at a cell population level showed that the amount of C5b-9-AF488 bound to K562 cells after complement activation was highly heterogeneous and inversely correlated with the CD59 level of expression. Efficient C9-AF488 vesiculation was observed in cells expressing low CD59 levels, suggesting that the protective impact of MAC elimination by vesiculation increases as the level of expression of CD59 decreases.  相似文献   

17.
In the female reproductive tract, the complement system represents a defense mechanism that can act directly against pathogens and cells, and mediates inflammatory response. Endometrial cells are protected from autologous complement attack by membrane-bound complement regulatory proteins (CRPs) that prevent complement activation: membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59). In this work we show that all CRPs were overexpressed after LPS exposure. Maximal stimulatory effect was detected after 6h, and was declining after 12h, reaching control levels in 24h. CD59 was the protein showing the more prominent effect. There seems to be a slight increase of CRP expression in the endometrium of sterile patients that have anti-endometrial antibodies (AEA) in their serum. Our results suggest that under stress, the high expression of CRPs (CD46, CD55, and CD59) could protect endometrial injured cells against complement mediated lysis. The survival of these cells with some biochemical modifications would enable autoimmune response.  相似文献   

18.
The contribution of N-linked carbohydrate to the complement-inhibitory function of the human erythrocyte membrane glycoprotein, CD59, was investigated. Amino acid sequence analysis of tryptic peptides labeled with [3H]borohydride revealed an N-linked carbohydrate moiety at the Asn18 residue. No O-linked carbohydrate was detected, as judged by the failure of asialo-CD59 to bind peanut agglutinin and by its resistance to digestion by O-glycanase. The apparent molecular mass of CD59 was reduced from 18-20 to 14 kDa upon complete digestion with N-glycanase, with no detectable proteolysis. N-glycanase digestion of CD59 was associated with an 88 +/- 4% loss of the complement-inhibitory activity of the protein, as assessed by its capacity to protect chicken erythrocytes from lysis by the human C5b-9 proteins. By contrast, no change in function was observed after digestion of CD59 with neuraminidase, under conditions that removed greater than 60% of [3H]sialic acid residues. Despite loss of functional activity after N-glycanase digestion, we detected no change in the capacity of the deglycosylated CD59 to incorporate into erythrocyte membranes or to bind specifically and with species selectivity to the C8 and C9 components of the membrane attack complex. In order to alter the branched-chain structure of the N-linked carbohydrate of CD59 without enzymatic digestion, Chinese hamster ovary (CHO) cells transfected with cDNA for human CD59 were grown in the alpha-mannosidase inhibitor, 1-deoxymannojirimycin, resulting in conversion of approximately 70% of the membrane glycoprotein to a high mannose. When grown in the presence of 1-deoxymannojirimycin, the C5b-9-inhibitory activity of CD59 expressed on the surface of the transfected CHO cells was reduced by an amount comparable to that observed for the N-glycanase digested protein. Taken together, these data suggest that normal glycosylation of Asn18 in CD59 is required for the normal expression of its complement-inhibitory activity on membrane surfaces, although these N-linked sugar residues do not contribute to CD59's affinity for the C8 and C9 components of the C5b-9 complex.  相似文献   

19.
Formation of the cytolytic membrane attack complex of complement on host cells is inhibited by the membrane-bound glycoprotein, CD59. The inhibitory activity of CD59 is species restricted, and human CD59 is not effective against rat complement. Previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues responsible for the species selective function of human CD59 map to a region contained between positions 40 and 66 in the primary structure. By comparative analysis of rat and human CD59 models and by mutational analysis of candidate residues, we now identify the individual residues within the 40-66 region that confer species selective function on human CD59. All nonconserved residues within the 40-66 sequence were substituted from human to rat residues in a series of chimeric human/rat CD59 mutant proteins. Functional analysis revealed that the individual human to rat residue substitutions F47A, T51L, R55E, and K65Q each produced a mutant human CD59 protein with enhanced rat complement inhibitory activity with the single F47A substitution having the most significant effect. Interestingly, the side chains of the residues at positions 47, 51, and 55 are all located on the short single helix (residues 47-55) of CD59 and form an exposed continuous strip parallel to the helix axis. A single human CD59 mutant protein containing rat residue substitutions at all three helix residues produced a protein with species selective activity comparable to that of rat CD59. We further found that synthetic peptides spanning the human CD59 helix sequence were able to inhibit the binding of human CD59 to human C8, but had little effect on the binding of rat CD59 to rat C8.  相似文献   

20.
Cholesterol is believed to serve as the common receptor for the cholesterol-dependent cytolysins (CDCs). One member of this toxin family, Streptococcus intermedius intermedilysin (ILY), exhibits a narrow spectrum of cellular specificity that is seemingly inconsistent with this premise. We show here that ILY, via its domain 4 structure, binds to the glycosyl-phosphatidylinositol-linked membrane protein human CD59 (huCD59). CD59 is an inhibitor of the membrane attack complex of human complement. ILY specifically binds to huCD59 via residues that are the binding site for the C8alpha and C9 complement proteins. These studies provide a new model for the mechanism of cellular recognition by a CDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号